Article

Propionibacterium acnes vaccination induces regulatory T cells and Th1 immune responses and improves mouse atopic dermatitis.

Experimental Dermatology (Impact Factor: 3.58). 02/2011; 20(2):157-8. DOI: 10.1111/j.1600-0625.2010.01180.x
Source: PubMed

ABSTRACT Atopic dermatitis (AD) is a chronic disease characterized by a polarized Th2 immune response. Propionibacterium acnes (P. acnes) has been shown to elicit strong Th1 immune responses. We hypothesized that the host immune response to P. acnes will prevent the development of AD. To demonstrate this hypothesis, we investigated the effect of P. acnes vaccination on AD that occurs in keratin 14/driven caspase-1 transgenic mouse. Vaccination with low dose of P. acnes successfully prevented clinical manifestations in the skin of AD mice associated with systemic and cutaneous increased expression of Th1-type cytokines but without suppression of Th2 cytokines. Interestingly, the numbers of IFN-γ(+) T cells, FoxP3(+) CD4(+) CD25(+) T cells (nTreg) and IL-10(+) T cells (Tr1) were significantly increased in the spleen. P. acnes vaccination has effects to alter the cytokine milieu and may be useful for the improvement of atopic symptom.

0 Bookmarks
 · 
79 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is a high unmet clinical need for new and better treatments in acne vulgaris. Propionibacterium acnes has a strong proinflammatory activity and targets molecules involved in the innate cutaneous immunity, keratinocytes and sebaceous glands of the pilosebaceous follicle. The role of P. acnes in acne confers legitimacy on the possible benefits of immunization-based approaches, which may represent a solution for limiting the development of antibiotic-resistant P. acnes. Various immunization-based approaches have been developed over the last decades, including killed pathogen-based vaccines, vaccination against cell wall-anchored sialidase, monoclonal antibodies to the Christie, Atkins, Munch-Peterson factor of P. acnes, anti-Toll-like receptors vaccines and natural antimicrobial peptides. This review summarizes the current evidence and explores the challenges to making this a realistic treatment option for the future.
    American Journal of Clinical Dermatology 09/2013; · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial interference creates an ecological competition between commensal and pathogenic bacteria. Through fermentation of milk with gut-friendly bacteria, yogurt is an excellent aid to balance the bacteriological ecosystem in the human intestine. Here, we demonstrate that fermentation of glycerol with Propionibacterium acnes (P. acnes), a skin commensal bacterium, can function as a skin probiotic for in vitro and in vivo growth suppression of USA300, the most prevalent community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). We also promote the notion that inappropriate use of antibiotics may eliminate the skin commensals, making it more difficult to fight pathogen infection. This study warrants further investigation to better understand the role of fermentation of skin commensals in infectious disease and the importance of the human skin microbiome in skin health.
    PLoS ONE 01/2013; 8(2):e55380. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skin harbours large communities of colonizing bacteria. The same bacterial species can exist in different physiological states: viable, dormant, non-viable. Each physiological state can have a different impact on skin health and disease. Various analytical methodologies target different physiological states of bacteria, and this must be borne in mind while interpreting microbiological tests and drawing conclusions about possible cause-effect relationships.
    Experimental Dermatology 07/2013; 22(7):443-446. · 3.58 Impact Factor

Full-text (2 Sources)

Download
5 Downloads
Available from
Sep 16, 2014