Article

Chemoprevention of hormone receptor-negative breast cancer: new approaches needed.

Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230, USA.
Recent results in cancer research. Fortschritte der Krebsforschung. Progrès dans les recherches sur le cancer 01/2011; 188:147-62. DOI: 10.1007/978-3-642-10858-7_13
Source: PubMed

ABSTRACT Results from clinical trials have demonstrated that it is possible to prevent estrogen-responsive breast cancers by targeting the estrogen receptor with selective estrogen receptor modulators (SERMs) (tamoxifen, raloxifene, or lasofoxifene) or with aromatase inhibitors (AIs) (anastrozole, letrozole, or exemestene). Results from breast cancer treatment trials suggest that aromatase inhibitors may be even more effective in preventing breast cancer than SERMs. However, while SERMs and aromatase inhibitors do prevent the development of many ER-positive breast cancers, these drugs do not prevent ER-negative breast cancer. These results show that new approaches are needed for the prevention of this aggressive form of breast cancer. Our laboratory and clinical efforts have been focused on identifying critical molecular pathways in breast cells that can be targeted for the prevention of ER-negative breast cancer. Our preclinical studies have demonstrated that other nuclear receptors, such as RXR receptors, vitamin D receptors, as well as others are critical for the growth of ER-negative breast cells and for the transformation of these cells into ER-negative cancers. Other studies show that growth factor pathways including those activated by EGFR, Her2, and IGFR, which are activated in many ER-negative breast cancers, can be targeted for the prevention of ER-negative breast cancer in mice. Clinical studies have also shown that PARP inhibitors are effective for the treatment of breast cancers arising in BRCA-1 or -2 mutation carriers, suggesting that targeting PARP may also be useful for the prevention of breast cancers arising in these high-risk individuals. Most recently, we have demonstrated that ER-negative breast cancers can be subdivided into four distinct groups based on the kinases that they express. These groups include ER-negative/Her-2-positive groups (the MAPK and immunomodulatory groups) and ER-negative/Her2-negative groups (the S6K and the cell cycle checkpoint groups). These groups of ER-negative breast cancers can be targeted with kinase inhibitors specific for each subgroup. These preclinical studies have supported the development of several clinical trials testing targeted agents for the prevention of breast cancer. The results of a completed Phase II cancer prevention trial using the RXR ligand bexarotene in women at high risk of breast cancer will be reviewed, and the current status of an ongoing Phase II trial using the EGFR and Her2 kinase inhibitor lapatinib for the treatment of women with DCIS breast cancer will be presented. It is anticipated that in the future these molecularly targeted drugs will be combined with hormonal agents such as SERMs or aromatase inhibitors to prevent all forms of breast cancer.

1 Bookmark
 · 
112 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-term breast-cancer survivors have a highly elevated risk (1 in 6 at 20 years) of contralateral second breast cancer. This high risk is associated with the presence of multiple pre-malignant cell clones in the contralateral breast at the time of primary breast cancer diagnosis. Mechanistic analyses suggest that a moderate dose of X-rays to the contralateral breast can kill these pre-malignant clones such that, at an appropriate Prophylactic Mammary Irradiation (PMI) dose, the long-term contralateral breast cancer risk in breast cancer survivors would be considerably decreased. To test the predicted relationship between PMI dose and cancer risk in mammary glands that have a high risk of developing malignancies. We tested the PMI concept using MMTV-PyVT mammary-tumor-prone mice. Mammary glands on one side of each mouse were irradiated with X-rays, while those on the other side were shielded from radiation. The unshielded mammary glands received doses of 0, 4, 8, 12 and 16Gy in 4-Gy fractions. In high-risk mammary glands exposed to radiation doses designed for PMI (12 and 16 Gy), tumor incidence rates were respectively decreased by a factor of 2.2 (95% CI, 1.1-5.0) at 12 Gy, and a factor of 3.1 (95% CI, 1.3-8.3) at 16 Gy, compared to those in the shielded glands that were exposed to very low radiation doses. The same pattern was seen for PMI-exposed mammary glands relative to zero-dose controls. The pattern of cancer risk reduction by PMI was consistent with mechanistic predictions. Contralateral breast PMI may thus have promise as a spatially targeted breast-conserving option for reducing the current high risk of contralateral second breast cancers. For estrogen-receptor positive primary tumors, PMI might optimally be used concomitantly with systemically delivered chemopreventive drugs such as tamoxifen or aromatase inhibitors, while for estrogen-receptor negative tumors, PMI might be used alone.
    PLoS ONE 01/2013; 8(12):e85795. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (-)-Epigallocatechin-3-gallate (EGCG) and chemotherapeutic agents cotreatment can improve cytotoxicity against cancer cells. We showed that EGCG and the rexinoid 6-OH-11-O-hydroxyphenanthrene (IIF), given together, were cytotoxic toward MCF-7, MCF-7TAM, and MDA-MB-231, three breast carcinoma cell lines showing different molecular characteristics. Cell growth arrest and apoptosis were greater after EGCG and IIF cotreatment than after individual administration. Cytotoxicity was related to upregulation of 67-kDa laminin receptor (LR67), one of the principal molecular targets of EGCG, and activation of the nuclear retinoic X receptors (RXRs) pathway. Furthermore, the transcription factor Forkhead box O3 (Foxo3a), a protein able to trigger apoptosis through upregulation of genes necessary for cell death, was activated. EGCG and IIF cotreatment produced a significant nuclear import of Foxo3a from the cytoplasm in MCF-7, MCF-7TAM, and MDA-MB-231 cells. In MCF-7TAM cells only, Foxo3a nuclear localization was associated with p473AKT downregulation. For the first time we showed that when EGCG and IIF, two harmless molecules, were given together, they might increase cytotoxicity in three breast carcinoma cell lines, two of them being representative of poorly responsive breast carcinoma types.
    BioMed Research International 01/2014; 2014:853086. · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signal Transducers and Activators of Transcription (STATs) are a family of transcription factors that regulate cell proliferation, differentiation, apoptosis, immune and inflammatory responses, and angiogenesis. Cumulative evidence has established that STAT3 has a critical role in the development of multiple cancer types. Because it is constitutively activated during disease progression and metastasis in a variety of cancers, STAT3 has promise as a drug target for cancer therapeutics. Recently, STAT3 was found to have an important role in maintaining cancer stem cells in vitro and in mouse tumor models, suggesting STAT3 is integrally involved in tumor initiation, progression and maintenance. STAT3 has been traditionally considered as nontargetable or undruggable, and the lag in developing effective STAT3 inhibitors contributes to the current lack of FDA-approved STAT3 inhibitors. Recent advances in cancer biology and drug discovery efforts have shed light on targeting STAT3 globally and/or specifically for cancer therapy. In this review, we summarize current literature and discuss the potential importance of STAT3 as a novel target for cancer prevention and of STAT3 inhibitors as effective chemopreventive agents.
    Cancers. 01/2014; 6(2):926-57.

Full-text (2 Sources)

Download
36 Downloads
Available from
May 31, 2014