Chemoprevention of hormone receptor-negative breast cancer: new approaches needed.

Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230, USA.
Recent results in cancer research. Fortschritte der Krebsforschung. Progrès dans les recherches sur le cancer 01/2011; 188:147-62. DOI: 10.1007/978-3-642-10858-7_13
Source: PubMed

ABSTRACT Results from clinical trials have demonstrated that it is possible to prevent estrogen-responsive breast cancers by targeting the estrogen receptor with selective estrogen receptor modulators (SERMs) (tamoxifen, raloxifene, or lasofoxifene) or with aromatase inhibitors (AIs) (anastrozole, letrozole, or exemestene). Results from breast cancer treatment trials suggest that aromatase inhibitors may be even more effective in preventing breast cancer than SERMs. However, while SERMs and aromatase inhibitors do prevent the development of many ER-positive breast cancers, these drugs do not prevent ER-negative breast cancer. These results show that new approaches are needed for the prevention of this aggressive form of breast cancer. Our laboratory and clinical efforts have been focused on identifying critical molecular pathways in breast cells that can be targeted for the prevention of ER-negative breast cancer. Our preclinical studies have demonstrated that other nuclear receptors, such as RXR receptors, vitamin D receptors, as well as others are critical for the growth of ER-negative breast cells and for the transformation of these cells into ER-negative cancers. Other studies show that growth factor pathways including those activated by EGFR, Her2, and IGFR, which are activated in many ER-negative breast cancers, can be targeted for the prevention of ER-negative breast cancer in mice. Clinical studies have also shown that PARP inhibitors are effective for the treatment of breast cancers arising in BRCA-1 or -2 mutation carriers, suggesting that targeting PARP may also be useful for the prevention of breast cancers arising in these high-risk individuals. Most recently, we have demonstrated that ER-negative breast cancers can be subdivided into four distinct groups based on the kinases that they express. These groups include ER-negative/Her-2-positive groups (the MAPK and immunomodulatory groups) and ER-negative/Her2-negative groups (the S6K and the cell cycle checkpoint groups). These groups of ER-negative breast cancers can be targeted with kinase inhibitors specific for each subgroup. These preclinical studies have supported the development of several clinical trials testing targeted agents for the prevention of breast cancer. The results of a completed Phase II cancer prevention trial using the RXR ligand bexarotene in women at high risk of breast cancer will be reviewed, and the current status of an ongoing Phase II trial using the EGFR and Her2 kinase inhibitor lapatinib for the treatment of women with DCIS breast cancer will be presented. It is anticipated that in the future these molecularly targeted drugs will be combined with hormonal agents such as SERMs or aromatase inhibitors to prevent all forms of breast cancer.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aromatase inhibitors (AI) are considered as a first line therapy for ER+PR+ breast cancers. However, many patients acquire resistance to AI. In this study, we determined the response of antiprogestin CDB-4124 (Proellex) on the aromatase overexpressing and Letrozole resistant cell lines and also studies its mechanism of action in inhibition of breast cancer cell proliferation. For these studies we generated aromatase overexpressing T47D (T47Darom) and respective control (T47Dcon) breast cancer cell lines by stable transfection with plasmid containing CYP19A1 gene, or empty vector respectively. Letrozole resistant cell line (T47DaromLR) was generated by incubating T47Darom for 75 weeks in the presence of 10μM Letrozole. Cell proliferation was determined by MTT or crystal violet assays. Gene expressions were quantified by QRT-PCR whereas proteins were identified by western blot analyses, flow cytometry and immunofluorescence staining. Aromatase activity was determined by estradiol ELISA. The effects of Proellex on the anchorage independent growth were measured by soft agar colony formation. Statistical differences between the various groups were determined by Student's 't' test or ANOVA followed by Bonferroni's post hoc test. Results showed that T47Darom and T47DaromLR cell lines had significantly higher aromatase expression (mRNA; 80-90 fold and protein) and as a result exhibited increased aromatization of testosterone to estradiol as compared to T47Dcon. Both these cell lines showed enhanced growth in the presence of Testosterone (50-60%). In T47DaromLR cells increased PR-B and EGFR expression as compared to T47Dcon cells was observed. Proellex and other known aromatase inhibitors (Letrozole, Anastrozole, and Exemestane) inhibited testosterone induced cell proliferation and anchorage independent growth of T47Darom cells. Cell growth inhibition was significantly greater when cells were treated with Proellex alone or in combination with other AIs as compared to AIs alone. Proellex inhibited mRNA and protein levels of PR-B, reduced PRB/p300 complex formation in the nuclei and significantly reduced EGFR expression in T47Darom cells. Our results in the present study indicate that antiproliferative effect of Proellex is probably due to PR-B/EGFR modulation in ER+PR+, aromatase expressing cells. Overall these results suggest that antiprogestin, Proellex can be developed as a possible treatment strategy for aromatase overexpressing ER+/PR+ breast cancer patients as well as for aromatase inhibitor resistant breast cancer patients.
    The Journal of steroid biochemistry and molecular biology 08/2012; 133C:30-42. · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently developed genomics-based tools are allowing repositioning of Food and Drug Administration (FDA)-approved drugs as cancer treatments, which were employed to identify drugs that target cancer stem cells (CSCs) of breast cancer. Gene expression datasets of CSCs from six studies were subjected to connectivity map to identify drugs that may ameliorate gene expression patterns unique to CSCs. All-trans retinoic acid (ATRA) was negatively connected with gene expression in CSCs. ATRA reduced mammosphere-forming ability of a subset of breast cancer cells, which correlated with induction of apoptosis, reduced expression of SOX2 but elevated expression of its antagonist CDX2. SOX2/CDX2 ratio had prognostic relevance in CSC-enriched breast cancers. K-ras mutant breast cancer cell line enriched for CSCs was resistant to ATRA, which was reversed by MAP kinase inhibitors. Thus, ATRA alone or in combination can be tested for efficacy using SOX2, CDX2, and K-ras mutation/MAPK activation status as biomarkers of response.
    Scientific Reports 08/2013; 3:2530. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years.
    Breast cancer research: BCR 01/2013; 15(5):R92. · 5.87 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014