Endothelins and their receptors in cancer: identification of therapeutic targets.

Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512, USA.
Pharmacological Research (Impact Factor: 3.98). 06/2011; 63(6):519-24. DOI: 10.1016/j.phrs.2011.01.002
Source: PubMed

ABSTRACT Endothelins and their receptors are important in normal physiology, but have been implicated in various pathophysiological conditions. Members of the so-called "endothelin axis" are dysregulated in a wide range of human cancers, opening the door for novel anticancer therapies. Established cancer chemotherapeutic agents and drugs that target specific components of the endothelin axis have been combined with promising results, but more work is needed in this area. The endothelin axis affects numerous signaling pathways, including Ras, mitogen activated protein kinases, β-catenin/T-cell factor/lymphoid enhancer factor, nuclear factor-κB (NFκB), SNAIL, and mammalian target of rapamycin (mTOR). There is much still to learn about optimizing drug specificity in this area, while minimizing off-target effects. Selective agonists and antagonists of endothelins, their receptors, and upstream processing enzymes, as well as knockdown strategies in vitro, are providing valuable leads for testing in the clinical setting. The endothelin axis continues to be an attractive avenue of scientific endeavor, both in the cancer arena and in other important health-related disciplines.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The idea of antiangiogenic therapy was the brainchild of Dr. Judah Folkman in the early 1970s. He proposed that by cutting off the blood supply, cancer cells would be deprived of nutrients and, hence, treated. His efforts paid off when bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor, was approved as antiangiogenic therapy in 2004 for the treatment of colon cancer. Since then, an array of antiangiogenic inhibitors, either as monotherapy or in combination with other cytotoxic and chemotherapy drugs, have been developed, used in clinical trials, and approved for the treatment of cancer. Despite this important breakthrough, antiangiogenic therapy for cancer met with a number of hurdles on its way to becoming an option for cancer therapy. In this article, we summarize the most current information on the mechanisms of tumor angiogenesis, proangiogenic and antiangiogenic factors, potential targets and their mechanisms of action, and experimental evidences, as well as the most recent clinical trial data on antiangiogenic agents for cancer therapy.
    Pharmacotherapy 12/2012; 32(12):1095-111. · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: G-protein coupled receptors (GPCRs) modulate diverse cellular responses to the majority of neurotransmitters and hormones within the human body. They exhibit much structural and functional diversity, and are responsive to a plethora of endogenous (biogenic amines, cations, lipids, peptides, and glycoproteins) and exogenous (therapeutic drugs, photons, tastants, and odorants) ligands and stimuli. Due to the key roles of GPCRs in tissue/cell physiology and homeostasis, signaling pathways associated with GPCRs are implicated in the pathophysiology of various diseases, ranging from metabolic, immunological, and neurodegenerative disorders, to cancer and infectious diseases. Approximately 40 percent of clinically approved drugs mediate their effects by modulating GPCR signaling pathways, which makes them attractive targets for drug screening and discovery. The pace of discovery of new GPCR-based drugs has recently accelerated due to rapid advancements in high-resolution structure determination, high-throughput screening technology and in silico computational modeling of GPCR binding interaction with potential drug molecules. This review aims to provide an overview of the diverse roles of GPCRs in the pathophysiology of various diseases that are the major focus of biopharmaceutical research as potential drug targets.
    Biotechnology advances 08/2013; · 8.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The endothelin axis, comprising endothelins (ET-1, ET-2 and ET-3) and their receptors (ETAR and ETBR), has emerged as relevant player in tumor growth and metastasis. Here, we investigated the involvement of ET-1/ETAR axis in chronic lymphocytic leukemia (CLL). CLL cells expressed higher levels of ET-1 and ETA receptor as compared to normal B cells. ET-1 peptide stimulated phosphoinositide-3-kinase and mitogen-activated protein kinase signaling pathways, improved survival and promoted proliferation of leukemic cells throughout ETAR triggering. Moreover, the blockade of ETAR by the selective antagonist BQ-123 inhibited the survival advantage acquired by CLL cells in contact with endothelial layers. We also found that blocking ETAR via BQ-123 interferes with ERK phosphorylation and CLL pro-survival effect mediated by B-cell receptor (BCR) activation. The pro-apoptotic effect of phosphoinositide-3-kinase δ inhibitor idelalisib and mitogen-activated protein kinase inhibitor PD98059 was decreased by the addition of ET-1 peptide. Then, ET-1 also reduced the cytotoxic effect of fludarabine on CLL cells cultured alone or co-cultured on endothelial layers. ETAR blockade by BQ-123 inhibited the ET-1-mediated protection against drug-induced apoptosis. Lastly, higher plasma levels of big ET-1 were detected in patients (n = 151) with unfavourable prognostic factors and shorter time to first treatment. In conclusion, our data describe for the first time a role of ET-1/ETAR signaling in CLL pathobiology. ET-1 mediates survival, drug-resistance, and growth signals in CLL cells that can be blocked by ETAR inhibition.
    PLoS ONE 06/2014; 9(6):e98818. · 3.53 Impact Factor

Full-text (3 Sources)

Available from
Aug 18, 2014