Article

Endothelins and their receptors in cancer: Identification of therapeutic targets

Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512, USA.
Pharmacological Research (Impact Factor: 3.98). 06/2011; 63(6):519-24. DOI: 10.1016/j.phrs.2011.01.002
Source: PubMed

ABSTRACT Endothelins and their receptors are important in normal physiology, but have been implicated in various pathophysiological conditions. Members of the so-called "endothelin axis" are dysregulated in a wide range of human cancers, opening the door for novel anticancer therapies. Established cancer chemotherapeutic agents and drugs that target specific components of the endothelin axis have been combined with promising results, but more work is needed in this area. The endothelin axis affects numerous signaling pathways, including Ras, mitogen activated protein kinases, β-catenin/T-cell factor/lymphoid enhancer factor, nuclear factor-κB (NFκB), SNAIL, and mammalian target of rapamycin (mTOR). There is much still to learn about optimizing drug specificity in this area, while minimizing off-target effects. Selective agonists and antagonists of endothelins, their receptors, and upstream processing enzymes, as well as knockdown strategies in vitro, are providing valuable leads for testing in the clinical setting. The endothelin axis continues to be an attractive avenue of scientific endeavor, both in the cancer arena and in other important health-related disciplines.

Download full-text

Full-text

Available from: Roderick Dashwood, Aug 18, 2014
2 Followers
 · 
81 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epididymal tumour incidence is at most 0.03% of all male cancers. It is an enigma why the human epididymis does not often succumb to cancer, when it expresses markers of stem and cancer cells, and constitutively expresses oncogenes, pro-proliferative and pro-angiogenic factors that allow tumour cells to escape immunosurveillance in cancer-prone tissues. The privileged position of the human epididymis in evading tumourigenicity is reflected in transgenic mouse models in which induction of tumours in other organs is not accompanied by epididymal neoplasia. The epididymis appears to: (i) prevent tumour initiation (it probably lacks stem cells and has strong anti-oxidative mechanisms, active tumour suppressors and inactive oncogene products); (ii) foster tumour monitoring and destruction (by strong immuno-surveillance and -eradication, and cellular senescence); (iii) avert proliferation and angiogenesis (with persistent tight junctions, the presence of anti-angiogenic factors and misplaced pro-angiogenic factors), which together (iv) promote dormancy and restrict dividing cells to hyperplasia. Epididymal cells may be rendered non-responsive to oncogenic stimuli by the constitutive expression of factors generally inducible in tumours, and resistant to the normal epididymal environment, which mimics that of a tumour niche promoting tumour growth. The threshold for tumour initiation may thus be higher in the epididymis than in other organs. Several anti-tumour mechanisms are those that maintain spermatozoa quiescent and immunologically silent, so the low incidence of cancer in the epididymis may be a consequence of its role in sperm maturation and storage. Understanding these mechanisms may throw light on cancer prevention and therapy in general.
    Asian Journal of Andrology 04/2012; 14(3):465-75. DOI:10.1038/aja.2012.20 · 2.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The endothelin axis, comprising endothelin-1 (ET-1) and its receptors (ETA and ETB), is involved in the pathophysiology of different human tumors. Here we review conventional approaches and gene expression profiling indicating the association of ET-1 and its cognate receptors with human and rat leiomyomas, the most common benign tumors of myometrium. Specifically, ET-1/ETA interactions affect human and rat leiomyoma cell proliferation through protein kinase C and mitogen-activated protein kinase-dependent signaling pathways. Recent experiments demonstrate that the ET-1 axis exerts a potent antiapoptotic effect involving sphingolipid metabolism and prostaglandin-endoperoxide synthase 2/prostaglandin system in the rat Eker leiomyoma tumor-derived ELT3 cell line. Evidence supports that steroid hormones, growth factors, and extracellular matrix are key regulators of the leiomyoma growth. Interestingly, the ET-1 axis is under steroid hormones and can cooperate with these growth factors. Therefore, ET-1 alone or in association with these factors could contribute to the complex regulation of uterine tumor growth, such as proliferation, survival, and extracellular matrix production. This review summarizes current knowledge and emerging data on ET-1 in uterine leiomyoma pathology.
    Biology of Reproduction 05/2012; 87(1):5, 1-10. DOI:10.1095/biolreprod.111.097725 · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The idea of antiangiogenic therapy was the brainchild of Dr. Judah Folkman in the early 1970s. He proposed that by cutting off the blood supply, cancer cells would be deprived of nutrients and, hence, treated. His efforts paid off when bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor, was approved as antiangiogenic therapy in 2004 for the treatment of colon cancer. Since then, an array of antiangiogenic inhibitors, either as monotherapy or in combination with other cytotoxic and chemotherapy drugs, have been developed, used in clinical trials, and approved for the treatment of cancer. Despite this important breakthrough, antiangiogenic therapy for cancer met with a number of hurdles on its way to becoming an option for cancer therapy. In this article, we summarize the most current information on the mechanisms of tumor angiogenesis, proangiogenic and antiangiogenic factors, potential targets and their mechanisms of action, and experimental evidences, as well as the most recent clinical trial data on antiangiogenic agents for cancer therapy.
    Pharmacotherapy 12/2012; 32(12):1095-111. DOI:10.1002/phar.1147 · 2.20 Impact Factor