Article

X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel.

Institut Pasteur, Groupe Récepteurs-Canaux, F-75015 Paris, France.
Nature (Impact Factor: 42.35). 01/2011; 469(7330):428-31. DOI: 10.1038/nature09647
Source: PubMed

ABSTRACT General anaesthetics have enjoyed long and widespread use but their molecular mechanism of action remains poorly understood. There is good evidence that their principal targets are pentameric ligand-gated ion channels (pLGICs) such as inhibitory GABA(A) (γ-aminobutyric acid) receptors and excitatory nicotinic acetylcholine receptors, which are respectively potentiated and inhibited by general anaesthetics. The bacterial homologue from Gloeobacter violaceus (GLIC), whose X-ray structure was recently solved, is also sensitive to clinical concentrations of general anaesthetics. Here we describe the crystal structures of the complexes propofol/GLIC and desflurane/GLIC. These reveal a common general-anaesthetic binding site, which pre-exists in the apo-structure in the upper part of the transmembrane domain of each protomer. Both molecules establish van der Waals interactions with the protein; propofol binds at the entrance of the cavity whereas the smaller, more flexible, desflurane binds deeper inside. Mutations of some amino acids lining the binding site profoundly alter the ionic response of GLIC to protons, and affect its general-anaesthetic pharmacology. Molecular dynamics simulations, performed on the wild type (WT) and two GLIC mutants, highlight differences in mobility of propofol in its binding site and help to explain these effects. These data provide a novel structural framework for the design of general anaesthetics and of allosteric modulators of brain pLGICs.

2 Followers
 · 
221 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cyanobacterial pentameric ligand-gated ion channel GLIC, a homolog of the Cys-loop receptor superfamily, has provided useful structural and functional information about its eukaryotic counterparts. X-ray diffraction data and site-directed mutagenesis have previously implicated a transmembrane histidine residue (His234) as essential for channel function. Here, we investigated the role of His234 via synthesis and incorporation of histidine analogs and α-hydroxy acids using in vivo nonsense suppression. Receptors were expressed heterologously in Xenopus laevis oocytes, and whole-cell voltage-clamp electrophysiology was used to monitor channel activity. We show that an interhelix hydrogen bond involving His234 is important for stabilization of the open state, and that the shape and basicity of its side chain are highly sensitive to perturbations. In contrast, our data show that two other His residues are not involved in the acid-sensing mechanism. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Chemistry & Biology 12/2014; 21(12):1700-1706. DOI:10.1016/j.chembiol.2014.10.019 · 6.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Complex biological systems are intimately linked to their environment, a very crowded and equally complex solution compartmentalized by fluid membranes. Modeling such systems remains challenging and requires a suitable representation of these solutions and their interfaces. Here, we focus on particle-based modeling at an atomistic level using molecular dynamics (MD) simulations. As an example, we discuss important steps in modeling the solution chemistry of an ion channel of the ligand-gated ion channel receptor family, a major target of many drugs including anesthetics and addiction treatments. The bacterial pentameric ligand-gated ion channel (pLGIC) called GLIC provides clues about the functional importance of solvation, in particular for mechanisms such as permeation and gating. We present some current challenges along with promising novel modeling approaches.
    Pure and Applied Chemistry 01/2012; 85(1):1-13. DOI:10.1351/PAC-CON-12-04-10 · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pentameric ligand-gated ion channels (pLGICs) mediate fast chemical neurotransmission of nerve signalling in the central and peripheral nervous systems. GLIC is a bacterial homologue of eukaryotic pLGIC, the X-ray structure of which has been determined in three different conformations. GLIC is thus widely used as a model to study the activation and the allosteric transition of this family of receptors. The recently solved high-resolution structure of GLIC (2.4 Å resolution) in the active state revealed two bound acetate molecules in the extracellular domain (ECD). Here, it is shown that these two acetates exactly overlap with known sites of pharmacological importance in pLGICs, and their potential influence on the structure of the open state is studied in detail. Firstly, experimental evidence is presented for the correct assignment of these acetate molecules by using the anomalous dispersion signal of bromoacetate. Secondly, the crystal structure of GLIC in the absence of acetate was solved and it is shown that acetate binding induces local conformational changes that occur in strategic sites of the ECD. It is expected that this acetate-free structure will be useful in future computational studies of the gating transition in GLIC and other pLGICs.
    Acta Crystallographica Section D Biological Crystallography 03/2015; 71(Pt 3):454-60. DOI:10.1107/S1399004714026698 · 7.23 Impact Factor