Article

X-Ray Structures of General Anaesthetics Bound to a Pentameric Ligand-Gated Ion Channel

Institut Pasteur, Groupe Récepteurs-Canaux, F-75015 Paris, France.
Nature (Impact Factor: 42.35). 01/2011; 469(7330):428-31. DOI: 10.1038/nature09647
Source: PubMed

ABSTRACT General anaesthetics have enjoyed long and widespread use but their molecular mechanism of action remains poorly understood. There is good evidence that their principal targets are pentameric ligand-gated ion channels (pLGICs) such as inhibitory GABA(A) (γ-aminobutyric acid) receptors and excitatory nicotinic acetylcholine receptors, which are respectively potentiated and inhibited by general anaesthetics. The bacterial homologue from Gloeobacter violaceus (GLIC), whose X-ray structure was recently solved, is also sensitive to clinical concentrations of general anaesthetics. Here we describe the crystal structures of the complexes propofol/GLIC and desflurane/GLIC. These reveal a common general-anaesthetic binding site, which pre-exists in the apo-structure in the upper part of the transmembrane domain of each protomer. Both molecules establish van der Waals interactions with the protein; propofol binds at the entrance of the cavity whereas the smaller, more flexible, desflurane binds deeper inside. Mutations of some amino acids lining the binding site profoundly alter the ionic response of GLIC to protons, and affect its general-anaesthetic pharmacology. Molecular dynamics simulations, performed on the wild type (WT) and two GLIC mutants, highlight differences in mobility of propofol in its binding site and help to explain these effects. These data provide a novel structural framework for the design of general anaesthetics and of allosteric modulators of brain pLGICs.

2 Followers
 · 
229 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Are lipid interactions with membrane proteins best described in terms of the physical properties of the lipid bilayer or in terms of direct molecular interactions between particular lipid molecules and particular sites on a protein? A molecular interpretation is more challenging because it requires detailed knowledge of the 3D structure of a membrane protein, but recent studies have suggested that a molecular interpretation is necessary. Here, the idea is explored that lipid molecules modify the ways that transmembrane α-helices pack into bundles, by penetrating between the helices and by binding into clefts between the helices, and that these effects on helix packing will modulate the activity of a membrane protein.
    Trends in Biochemical Sciences 08/2011; 36(9):493-500. DOI:10.1016/j.tibs.2011.06.007 · 13.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The α7 nicotinic acetylcholine receptor (nAChR) belongs to the family of pentameric ligand-gated ion channels and is involved in fast synaptic signaling. In this study, we take advantage of a recently identified chimera of the extracellular domain of the native α7 nicotinic acetylcholine receptor and acetylcholine binding protein, termed α7-AChBP. This chimeric receptor was used to conduct an innovative fragment-library screening in combination with X-ray crystallography to identify allosteric binding sites. One allosteric site is surface-exposed and is located near the N-terminal α-helix of the extracellular domain. Ligand binding at this site causes a conformational change of the α-helix as the fragment wedges between the α-helix and a loop homologous to the main immunogenic region of the muscle α1 subunit. A second site is located in the vestibule of the receptor, in a preexisting intrasubunit pocket opposite the agonist binding site and corresponds to a previously identified site involved in positive allosteric modulation of the bacterial homolog ELIC. A third site is located at a pocket right below the agonist binding site. Using electrophysiological recordings on the human α7 nAChR we demonstrate that the identified fragments, which bind at these sites, can modulate receptor activation. This work presents a structural framework for different allosteric binding sites in the α7 nAChR and paves the way for future development of novel allosteric modulators with therapeutic potential.
    Proceedings of the National Academy of Sciences 04/2015; 112(19). DOI:10.1073/pnas.1418289112 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: General anesthetics are a heterogeneous group of small amphiphilic ligands that interact weakly at multiple allosteric sites on many pentameric ligand gated ion channels (pLGICs), resulting in either inhibition, potentiation of channel activity, or both. Allosteric principles imply that modulator sites must change configuration and ligand affinity during receptor state transitions. Thus, general anesthetics and related compounds are useful both as state-dependent probes of receptor structure and as potentially selective modulators of pLGIC functions. This review focuses on general anesthetic sites in nicotinic acetylcholine receptors, which were among the first anesthetic-sensitive pLGIC experimental models studied, with particular focus on sites formed by transmembrane domain elements. Structural models place many of these sites at interfaces between two or more pLGIC transmembrane helices both within subunits and between adjacent subunits, and between transmembrane helices and either lipids (the lipid-protein interface) or water (i.e. the ion channel). A single general anesthetic may bind at multiple allosteric sites in pLGICs, producing a net effect of either inhibition (e.g. blocking the ion channel) or enhanced channel gating (e.g. inter-subunit sites). Other general anesthetic sites identified by photolabeling or crystallography are tentatively linked to functional effects, including intra-subunit helix bundle sites and the lipid-protein interface.
    Neuropharmacology 10/2014; DOI:10.1016/j.neuropharm.2014.10.002 · 4.82 Impact Factor