Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix

Division of Research, Department of Comprehensive Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
The FASEB Journal (Impact Factor: 5.48). 04/2011; 25(5):1474-85. DOI: 10.1096/fj.10-161497
Source: PubMed

ABSTRACT This study aimed to determine whether aging negatively affects MSC replication and osteogenesis and whether these features could be altered by exposure to an extracellular matrix (ECM) generated by marrow cells from young or old mice. A cell-free ECM was prepared from cultured femoral marrow cells from either 3- or 18-mo-old C57BL/6 mice (young-ECM or old-ECM, respectively). The replication and osteogenesis of young or old MSCs maintained on young-ECM vs. old-ECM as well as plastic were examined in vitro and in vivo. We found that the frequency of MSCs in marrow from old mice, measured by colony-forming cells, was only marginally lower than that of young mice. In contrast, defects in the self-renewal and bone formation capacity of old MSCs were remarkable. These defects were corrected by provision of a young-ECM but not old-ECM. In parallel cultures maintained on a young-ECM, the intracellular levels of reactive oxygen species from both old and young mice were reduced 30-50% compared to those maintained on old-ECM or plastic. We concluded that aging negatively affects the formation of an ECM that normally preserves MSC function, and aged MSCs can be rejuvenated by culture on a young-ECM.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. B-type lamins confer elasticity, while A-type lamins lend viscosity and stiffness to nuclei. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. The mechanical roles of lamins and their functions in gene regulation are often viewed as independent activities, but recent findings suggest a highly cross-linked and interdependent regulation of these different functions, particularly in mechanosignaling. In this newly emerging concept, lamins act as a "mechanostat" that senses forces from outside and responds to tension by reinforcing the cytoskeleton and the extracellular matrix. A-type lamins, emerin, and the linker of the nucleoskeleton and cytoskeleton (LINC) complex directly transmit forces from the extracellular matrix into the nucleus. These mechanical forces lead to changes in the molecular structure, modification, and assembly state of A-type lamins. This in turn activates a tension-induced "inside-out signaling" through which the nucleus feeds back to the cytoskeleton and the extracellular matrix to balance outside and inside forces. These functions regulate differentiation and may be impaired in lamin-linked diseases, leading to cellular phenotypes, particularly in mechanical load-bearing tissues. © 2015 Osmanagic-Myers et al.; Published by Cold Spring Harbor Laboratory Press.
    Genes & Development 02/2015; 29(3):225-237. DOI:10.1101/gad.255968.114 · 12.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microenvironment extracellular matrices (ECMs) influence cell adhesion, proliferation and differentiation. The ECMs of different microenvironments have distinctive compositions and architectures. This investigation addresses effects ECMs deposited by a variety of cell types and decellularized with a cold-EDTA protocol have on multipotent human mesenchymal stromal/stem cell (hMSC) behavior and differentiation. The cold-EDTA protocol removes intact cells from ECM, with minimal ECM damage and contamination. The decellularized ECMs deposited by cultured hMSCs, osteogenic hMSCs, and two smooth muscle cell (SMC) lines were tested for distinctive effects on the behavior and differentiation of early passage ('naïve') hMSC plated and cultured on the decellularized ECMs. Uninduced hMSC decellularized ECM enhanced naïve hMSC proliferation and cell motility while maintaining stemness. Decellularized ECM deposited by osteogenic hMSCs early in the differentiation process stimulated naïve hMSCs osteogenesis and substrate biomineralization in the absence of added dexamethasone, but this osteogenic induction potential was lower in ECMs decellularized later in the osteogenic hMSC differentiation process. Decellularized ECMs deposited by two smooth muscle cell lines induced naïve hMSCs to become smooth muscle cell-like with distinctive phenotypic characteristics of contractile and synthetic smooth muscle cells. This investigation demonstrates a useful approach for obtaining functional cell-deposited ECM and highlights the importance of ECM specificity in influencing stem cell behavior. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
    Differentiation 01/2015; 88(4-5). DOI:10.1016/j.diff.2014.12.005 · 2.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract A recent paper demonstrated that decellularized extracellular matrix (DECM) deposited by synovium-derived stem cells (SDSCs), especially from fetal donors, could rejuvenate human adult SDSCs in both proliferation and chondrogenic potential, in which expanded cells and corresponding culture substrate (such as DECM) were found to share a mutual reaction in both elasticity and protein profiles (see ref. 1). It seems that young DECM may assist in the development of culture strategies that optimize proliferation and maintain "stemness" of mesenchymal stem cells (MSCs), helping to overcome one of the primary difficulties in MSC-based regenerative therapies. In this paper, the effects of age on the proliferative capacity and differentiation potential of MSCs are reviewed, along with the ability of DECM from young cells to rejuvenate old cells. In an effort to highlight some of the potential molecular mechanisms responsible for this phenomenon, we discuss age-related changes to extracellular matrix (ECM)'s physical properties and chemical composition.
    Organogenesis 12/2014; 10(3). DOI:10.4161/15476278.2014.970089 · 2.60 Impact Factor