Distinct Representations of a Perceptual Decision and the Associated Oculomotor Plan in the Monkey Lateral Intraparietal Area

Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6074, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 01/2011; 31(3):913-21. DOI: 10.1523/JNEUROSCI.4417-10.2011
Source: PubMed

ABSTRACT Perceptual decisions that are used to select particular actions can appear to be formed in an intentional framework, in which sensory evidence is converted directly into a plan to act. However, because the relationship between perceptual decision-making and action selection has been tested primarily under conditions in which the two could not be dissociated, it is not known whether this intentional framework plays a general role in forming perceptual decisions or only reflects certain task conditions. To dissociate decision and motor processing in the brain, we recorded from individual neurons in the lateral intraparietal area of monkeys performing a task that included a flexible association between a decision about the direction of random-dot motion and the direction of the appropriate eye-movement response. We targeted neurons that responded selectively in anticipation of a particular eye-movement response. We found that these neurons encoded the perceptual decision in a manner that was distinct from how they encoded the associated response. These decision-related signals were evident regardless of whether the appropriate decision-response association was indicated before, during, or after decision formation. The results suggest that perceptual decision-making and action selection are different brain processes that only appear to be inseparable under particular behavioral contexts.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A decision to select an action from alternatives is often guided by rules that flexibly map sensory inputs to motor outputs when certain conditions are satisfied. However, the neural mechanisms underlying rule-based decision making remain poorly understood. Two complementary types of neurons in the supplementary eye field (SEF) of macaques have been identified that modulate activity differentially to interpret rules in an ocular go-nogo task, which stipulates that the animal either visually pursue a moving object if it intersects a visible zone ('go'), or maintain fixation if it does not ('nogo'). These neurons discriminate between go and nogo rule-states by increasing activity to signal their preferred (agonist) rule-state and decreasing activity to signal their non-preferred (antagonist) rule-state. In the current study, we found that SEF neurons decrease activity in anticipation of the antagonist rule-state, and do so more rapidly when the rule-state is easier to predict. This rapid decrease in activity could underlie a process of elimination in which trajectories that do not invoke the preferred rule-state receive no further computational resources. Furthermore, discrimination between difficult and easy trials in the antagonist rule-state occurs prior to when discrimination within the agonist rule-state occurs. A winner-take-all like model that incorporates a pair of mutually inhibited integrators to accumulate evidence in favor of either the decision to pursue or the decision to continue fixation accounts for the observed neural phenomena.
    Experimental Brain Research 11/2014; 233(2). DOI:10.1007/s00221-014-4127-2 · 2.17 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: The evolution of neural activity during a perceptual decision is well characterized by the evidence parameter in sequential sampling models. However, it is not known whether accumulating signals in human neuroimaging are related to the integration of evidence. Our aim was to determine whether activity accumulates in a nonperceptual task by identifying brain regions tracking the strength of probabilistic evidence. fMRI was used to measure whole-brain activity as choices were informed by integrating a series of learned prior probabilities. Participants first learned the predictive relationship between a set of shape stimuli and one of two choices. During scanned testing, they made binary choices informed by the sum of the predictive strengths of individual shapes. Sequences of shapes adhered to three distinct rates of evidence (RoEs): rapid, gradual, and switch. We predicted that activity in regions informing the decision would modulate as a function of RoE prior to the choice. Activity in some regions, including premotor areas, changed as a function of RoE and response hand, indicating a role in forming an intention to respond. Regions in occipital, temporal, and parietal lobes modulated as a function of RoE only, suggesting a preresponse stage of evidence processing. In all of these regions, activity was greatest on rapid trials and least on switch trials, which is consistent with an accumulation-to-boundary account. In contrast, activity in a set of frontal and parietal regions was greatest on switch and least on rapid trials, which is consistent with an effort or time-on-task account.
    Journal of Cognitive Neuroscience 10/2014; 27(4):1-15. DOI:10.1162/jocn_a_00739 · 4.69 Impact Factor


1 Download
Available from