Immune system development during early childhood in tropical Latin America: Evidence for the age-dependent down regulation of the innate immune response

Laboratorio de Investigaciones FEPIS, Quininde, Esmeraldas Province, Ecuador.
Clinical Immunology (Impact Factor: 3.99). 03/2011; 138(3):299-310. DOI: 10.1016/j.clim.2010.12.011
Source: PubMed

ABSTRACT The immune response that develops in early childhood underlies the development of inflammatory diseases such as asthma and there are few data from tropical Latin America (LA). This study investigated the effects of age on the development of immunity during the first 5 years of life by comparing innate and adaptive immune responses in Ecuadorian children aged 6-9 months, 22-26 months, and 48-60 months. Percentages of naïve CD4+ T cells declined with age while those of memory CD4(+) and CD8(+) T cells increased indicating active development of the immune system throughout the first five years. Young infants had greater innate immune responses to TLR agonists compared to older children while regulatory responses including SEB-induced IL-10 and percentages of FoxP3(+) T-regulatory cells decreased with age. Enhanced innate immunity in early life may be important for host defense against pathogens but may increase the risk of immunopathology.


Available from: Laura C Rodrigues, Jun 13, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Geohelminth infections are highly prevalent infectious diseases of childhood in many regions of the Tropics, and are associated with significant morbidity especially among pre-school and school-age children. There is growing concern that geohelminth infections, particularly exposures occurring during early life in utero through maternal infections or during infancy, may affect vaccine immunogenicity in populations among whom these infections are endemic. Further, the low prevalence of allergic disease in the rural Tropics has been attributed to the immune modulatory effects of these infections and there is concern that widespread use of anthelmintic treatment in high-risk groups may be associated with an increase in the prevalence of allergic diseases. Because the most widely used vaccines are administered during the first year of life and the antecedents of allergic disease are considered to occur in early childhood, the present study has been designed to investigate the impact of early exposures to geohelminths on the development of protective immunity to vaccines, allergic sensitization, and allergic disease. A cohort of 2,403 neonates followed up to 8 years of age. Primary exposures are infections with geohelminth parasites during the last trimester of pregnancy and the first 2 years of life. Primary study outcomes are the development of protective immunity to common childhood vaccines (i.e. rotavirus, Haemophilus influenzae type B, Hepatitis B, tetanus toxoid, and oral poliovirus type 3) during the first 5 years of life, the development of eczema by 3 years of age, the development of allergen skin test reactivity at 5 years of age, and the development of asthma at 5 and 8 years of age. Potential immunological mechanisms by which geohelminth infections may affect the study outcomes will be investigated also. The study will provide information on the potential effects of early exposures to geohelminths (during pregnancy and the first 2 years of life) on the development of vaccine immunity and allergy. The data will inform an ongoing debate of potential effects of geohelminths on child health and will contribute to policy decisions on new interventions designed to improve vaccine immunogenicity and protect against the development of allergic diseases. Current Controlled Trials ISRCTN41239086.
    BMC Infectious Diseases 06/2011; 11:184. DOI:10.1186/1471-2334-11-184 · 2.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to investigate the association between T cell receptor excision circle levels in peripheral blood mononuclear cells and regulatory T cells that co-express CD25 and Foxp3 in healthy children and adolescents of different ages. The quantification of signal-joint T-cell receptor excision circle levels in the genomic DNA of peripheral blood mononuclear cells was performed using real-time quantitative PCR. The analysis of CD4, CD8, CD25, and Foxp3 expression was performed using flow cytometry. Ninety-five healthy controls (46 females and 49 males) ranging in age from 1 to 18 years were analyzed. The mean T-cell receptor excision circle count in all individuals was 89.095 ± 36.790 T-cell receptor excision circles per microgram of DNA. There was an inverse correlation between T-cell receptor excision circles counts and age (r = -0.846; p<0.001) as well as between the proportion of CD4(+)CD25(+)Foxp3(+) T cells and age (r = -0.467; p = 0.04). In addition, we observed a positive correlation between the amount of CD4(+)CD25(+)Foxp3(+) T cells and the amount of T-cell receptor excision circles per microgram of DNA in individuals of all ages (r = -0.529; p = 0.02). In this study, we observed a decrease in the thymic function with age based on the fact that the level of T-cell receptor excision circles in the peripheral blood positively correlated with the proportion of regulatory T cells in healthy children and adolescents. These findings indicate that although T-cell receptor excision circles and regulatory T cells levels decrease with age, homeostasis of the immune system and relative regulatory T cells population levels are maintained in the peripheral blood.
    Clinics (São Paulo, Brazil) 05/2012; 67(5):425-9. DOI:10.6061/clinics/2012(05)04 · 1.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The success of the World Health Organization recommended "Expanded Program of Immunization" (EPI) and similar regional or national programs has been astounding. However, infectious threats currently not covered by these programs continue to infect millions of infants around the world. Furthermore, many infants do not receive existing vaccines either on time or for the required number of doses to provide optimal protection. Nor do all infants around the world develop the same protective immune response to the same vaccine. As a result approximately three million infants die every year from vaccine preventable infections. To tackle these issues, new vaccines need to be developed as well as existing ones made easier to administer. This requires identification of age-optimized vaccine schedules and formulations. In order to be most effective this approach will need to take population-based differences in response to vaccines and adjuvants into account. This review summarizes what is currently known about differences between populations around the world in the innate immune response to existing as well as new and promising vaccine adjuvants.
    Frontiers in Immunology 04/2013; 4:81. DOI:10.3389/fimmu.2013.00081