Article

Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects

Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Hammersmith Campus, Imperial College London, London, UK.
European journal of clinical nutrition (Impact Factor: 2.95). 01/2011; 65(4):508-13. DOI: 10.1038/ejcn.2010.291
Source: PubMed

ABSTRACT The sweet-taste receptor (T1r2+T1r3) is expressed by enteroendocrine L-cells throughout the gastrointestinal tract. Application of sucralose (a non-calorific, non-metabolisable sweetener) to L-cells in vitro stimulates glucagon-like peptide (GLP)-1 secretion, an effect that is inhibited with co-administration of a T1r2+T1r3 inhibitor. We conducted a randomised, single-blinded, crossover study in eight healthy subjects to investigate whether oral ingestion of sucralose could stimulate L-cell-derived GLP-1 and peptide YY (PYY) release in vivo.
Fasted subjects were studied on 4 study days in random order. Subjects consumed 50 ml of either water, sucralose (0.083% w/v), a non-sweet, glucose-polymer matched for sweetness with sucralose addition (50% w/v maltodextrin+0.083% sucralose) or a modified sham-feeding protocol (MSF=oral stimulation) of sucralose (0.083% w/v). Appetite ratings and plasma GLP-1, PYY, insulin and glucose were measured at regular time points for 120 min. At 120 min, energy intake at a buffet meal was measured.
Sucralose ingestion did not increase plasma GLP-1 or PYY. MSF of sucralose did not elicit a cephalic phase response for insulin or GLP-1. Maltodextrin ingestion significantly increased insulin and glucose compared with water (P<0.001). Appetite ratings and energy intake were similar for all groups.
At this dose, oral ingestion of sucralose does not increase plasma GLP-1 or PYY concentrations and hence, does not reduce appetite in healthy subjects. Oral stimulation with sucralose had no effect on GLP-1, insulin or appetite.

Download full-text

Full-text

Available from: Heather E Ford, Aug 21, 2014
1 Follower
 · 
224 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to examine the role of GLP-1 in the hypoglycemic activity of wild bitter gourd (Momordica charantia L., BG). In vitro, the GLP-1 secretion in STC-1, a murine enteroendocrine cell line, was dose dependently stimulated by water extract (WE), its fractions (WEL, >3 kD and WES, <3 kD), and a bitter compounds-rich fraction of BG. These stimulations were partially inhibited by probenecid, a bitter taste receptor inhibitor, and by U-73122, a phospholipase C β 2 inhibitor. These results suggested that the stimulation might involve, at least in part, certain bitter taste receptors and/or PLC β 2-signaling pathway. Two cucurbitane triterpenoids isolated from BG, 19-nor-cucurbita-5(10),6,8,22-(E),24-pentaen-3 β -ol, and 5 β ,19-epoxycucurbita-6,24-diene-3 β ,23 ξ -diol (karavilagenine E,) showed relative high efficacy in the stimulation. In vivo, mice fed BG diet showed higher insulinogenic index in an oral glucose tolerance test. A single oral dose of WE or WES pretreatment significantly improved intraperitoneal glucose tolerance. A single oral dose of WES significantly decreased glucose and increased insulin and GLP-1 in serum after 30 min. This acute hypoglycemic effect of WES was abolished by pretreatment with exendin-9, a GLP-1 receptor antagonist. Our data provide evidence that BG stimulates GLP-1 secretion which contributes, at least in part, to the antidiabetic activity of BG through an incretin effect.
    Evidence-based Complementary and Alternative Medicine 01/2013; 2013:625892. DOI:10.1155/2013/625892 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The city of Catania is one of the most seismically active areas of Italy. This paper describes and compares the results of in situ and laboratory investigations that were carried out in order to determine the dynamic characteristics of Saint Nicola alla Rena Church site. Special attention has been paid to the variation of shear modulus and damping ratio with strain level and depth. Moreover normalised laws are proposed to consider shear modulus decay and damping ratio increase with strain level. The deposits under consideration consist of fractured to slightly fractured lava, with horizons of scoriaceus lava, lava in blocks, “rifusa” and volcanoclastic rocks.
    Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering, Satellite Conference “Lessons Learned from Recent Strong Earthquakes”, ISBN: 975-7180-06-8, Istanbul; 08/2001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are gut peptides which are secreted by endocrine cells in the intestinal mucosa. Their plasma concentrations increase quickly following food ingestion, and carbohydrate, fat, and protein have all been shown to stimulate GLP-1 and GIP secretion. Although neural and hormonal mechanisms have also been proposed to regulate incretin hormone secretion, direct stimulation of the enteroendocrine cells by the presence of nutrients in the intestinal lumen is probably the most important factor in humans. The actions of the incretin hormones are crucial for maintaining normal islet function and glucose homeostasis. Furthermore, it is also now being recognized that incretin hormones may have other actions in addition to their glucoregulatory effects. Studies have shown that GLP-1 and GIP levels and actions may be perturbed in disease states, but interpretation of the precise relationship between disease and incretins is difficult. The balance of evidence seems to suggest that alterations in secretion and/or action of incretin hormones arise secondarily to the development of insulin resistance, glucose intolerance, and/or increases in body weight rather than being causative factors. However, these impairments may contribute to the deterioration of glycemic control in diabetic patients.
    The Review of Diabetic Studies 01/2011; 8(3):293-306. DOI:10.1900/RDS.2011.8.293