Article

Analysis of intensity variability in multislice and cone beam computed tomography.

Oral Imaging Center, Faculty of Medicine, K.U. Leuven, Belgium.
Clinical Oral Implants Research (Impact Factor: 3.43). 01/2011; 22(8):873-9. DOI: 10.1111/j.1600-0501.2010.02076.x
Source: PubMed

ABSTRACT The aim of this study was to evaluate the variability of intensity values in cone beam computed tomography (CBCT) imaging compared with multislice computed tomography Hounsfield units (MSCT HU) in order to assess the reliability of density assessments using CBCT images.
A quality control phantom was scanned with an MSCT scanner and five CBCT scanners. In one CBCT scanner, the phantom was scanned repeatedly in the same and in different positions. Images were analyzed using registration to a mathematical model. MSCT images were used as a reference.
Density profiles of MSCT showed stable HU values, whereas in CBCT imaging the intensity values were variable over the profile. Repositioning of the phantom resulted in large fluctuations in intensity values.
The use of intensity values in CBCT images is not reliable, because the values are influenced by device, imaging parameters and positioning.

0 Bookmarks
 · 
204 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: No studies are available that provide predictive parameters regarding the expected amount of resorption after maxillary sinus augmentation surgery using autologous bone grafts. Therefore, the aim of this study was to determine parameters influencing the outcome of the bone graft resorption process. In 20 patients, three-dimensional analysis of alveolar ridge dimensions and bone graft volume change in the atrophic posterior maxilla was performed by Cone-Beam Computerized Tomography imaging. Ridge dimensions were assessed before maxillary sinus augmentation surgery. Bone graft volumes were compared after maxillary sinus floor augmentation surgery and a graft healing interval of several months. To analyze the relation between bone volume changes with the independent variables, patients' gender, age, alveolar crest height and width, and graft healing time interval, a multi-level extension of linear regression was applied. A residual bone height of 6.0 mm (SD = 3.6 mm) and 6.2 mm (SD = 3.6 mm) was found at the left and right sides, respectively. Moreover, alveolar bone widths of 6.5 mm (SD = 2.2 mm) and 7.0 mm (SD = 2.3 mm) at the premolars, and 8.8 mm (SD = 2.2 mm) and 8.9 mm (SD = 2.5 mm) at the molars regions were found at the left and right site, respectively. Bone graft volume decreased by 25.0% (SD = 21.0%) after 4.7 months (SD = 2.7, median = 4.0 months) of healing time. The variables "age" (P = 0.009) and mean alveolar crest "bone height" (P = 0.043), showed a significant influence on bone graft resorption. A decrease of 1.0% (SE = 0.3%) of bone graft resorption was found for each year the patient grew older, and an increase in bone graft resorption of 1.8% (SE = 0.8%) was found for each mm of original bone height before sinus floor augmentation. Graft resorption occurs when using autologous bone grafts for maxillary sinus augmentation. Alveolar crest bone height and patient age have a significant effect on graft resorption, with increased resorption for higher alveolar crest bone height and decreased resorption for older patients. Consequently, patient characteristics that affect the process of bone graft resorption should be given full consideration, when performing sinus augmentation surgery.
    Clinical Oral Implants Research 10/2011; 23(4):409-15. · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gray level is the range of shades of gray in the pixels, representing the x-ray attenuation coefficient that allows for tissue density assessments in computed tomography (CT). An in-vitro study was performed to investigate the relationship between computed gray levels in 3 cone-beam CT (CBCT) scanners and 1 multislice spiral CT device using 5 software programs. Six materials (air, water, wax, acrylic, plaster, and gutta-percha) were scanned with the CBCT and CT scanners, and the computed gray levels for each material at predetermined points were measured with OsiriX Medical Imaging software (Geneva, Switzerland), OnDemand3D (CyberMed International, Seoul, Korea), E-Film (Merge Healthcare, Milwaukee, Wis), Dolphin Imaging (Dolphin Imaging & Management Solutions, Chatsworth, Calif), and InVivo Dental Software (Anatomage, San Jose, Calif). The repeatability of these measurements was calculated with intraclass correlation coefficients, and the gray levels were averaged to represent each material. Repeated analysis of variance tests were used to assess the differences in gray levels among scanners and materials. There were no differences in mean gray levels with the different software programs. There were significant differences in gray levels between scanners for each material evaluated (P <0.001). The software programs were reliable and had no influence on the CT and CBCT gray level measurements. However, the gray levels might have discrepancies when different CT and CBCT scanners are used. Therefore, caution is essential when interpreting or evaluating CBCT images because of the significant differences in gray levels between different CBCT scanners, and between CBCT and CT values.
    American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 07/2013; 144(1):147-55. · 1.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To assess the influence of anatomical location on computed tomography (CT) numbers in mid- and full field of view (FOV) cone beam computed tomography (CBCT) scans. Polypropylene tubes with varying concentrations of dipotassium hydrogen phosphate (K2HPO4) solutions (50-1200mg/mL) were imaged within the incisor, premolar, and molar dental sockets of a human skull phantom. CBCT scans were acquired using the NewTom 3G and NewTom 5G units. The CT numbers of the K2HPO4 phantoms were measured, and the relationship between CT numbers and K2HPO4 concentration was examined. The measured CT numbers of the K2HPO4 phantoms were compared between anatomical sites. At all six anatomical locations, there was a strong linear relationship between CT numbers and K2HPO4 concentration (R(2)>0.93). However, the absolute CT numbers varied considerably with the anatomical location. The relationship between CT numbers and object density is not uniform through the dental arch on CBCT scans.
    Oral surgery, oral medicine, oral pathology and oral radiology. 04/2013; 115(4):558-64.