Article

Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro.

EA 4466, Département de Biologie Expérimentale, Métabolique et Clinique, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France.
Journal of Pineal Research (Impact Factor: 7.81). 04/2011; 50(3):328-35. DOI: 10.1111/j.1600-079X.2010.00847.x
Source: PubMed

ABSTRACT Melatonin (N-acetyl-5-hydroxytryptamine) is a pineal hormone widely known for its antioxidant properties, both in vivo and by direct capture of free radicals in vitro. Although some metabolites and oxidation products of melatonin have been identified, the molecular mechanism by which melatonin exerts its antioxidant properties has not been totally unravelled. This study investigated the reaction mechanism of oxidation of melatonin by radio-induced reactive oxygen species, generated by gamma radiolysis of water for aqueous solutions of melatonin (from 20 to 200 μm), in the presence or absence of molecular oxygen. The hydroxyl radical was found to be the unique species able to initiate the oxidation process, leading to three main products, e.g. N(1)-acetyl-N(2)-formyl-5-methoxykynurenin (AFMK), N(1)-acetyl-5-methoxykynurenin (AMK) and hydroxymelatonin (HO-MLT). The generation of AFMK and HO-MLT strongly depended on the presence of molecular oxygen in solution: AFMK was the major product in aerated solutions (84%), whereas HO-MLT was favoured in the absence of oxygen (86%). Concentrations of AMK remained quite low, and AMK was proposed to result from a chemical hydrolysis of AFMK in solution. A K-value of 1.1 × 10(-4) was calculated for this equilibrium. Both hydrogen peroxide and superoxide dismutase had no effect on the radio-induced oxidation of melatonin, in good accordance for the second case with the poor reactivity of the superoxide anion towards melatonin. Finally, a reaction mechanism was proposed for the oxidation of melatonin in vitro.

0 Bookmarks
 · 
237 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been demonstrated previously that inflammation in perivascular adipose tissue (PVAT) may be implicated in vascular dysfunction. The aim of this study was to investigate the functional responses of small mesenteric arteries in a hyperphagic animal model of obesity after chronic treatment with melatonin, an endogenous hormone with antioxidant and vasculoprotective properties. Ten obese mice (ob/ob) and 10 control lean mice (CLM) were treated with melatonin 100 mg/kg per day in the drinking water for 8 weeks. Mesenteric small resistance arteries were dissected and mounted on a wire myograph and a concentration-response to norepinephrine was evaluated in vessels with intact PVAT and after PVAT was removed and in the presence of iberiotoxin, a selective blocker of BKCA channels as well as under conditions of induced hypoxia in vitro. The presence of PVAT reduced the contractile response to norepinephrine in both ob/ob and CLM; however, the effect was significantly reduced in ob/ob. The anticontractile effect of PVAT completely disappeared with iberiotoxin preincubation. After melatonin treatment, inflammation was significantly ameliorated, and the contractile response in ob/ob and CLM was significantly reduced when PVAT was removed. Anticontractile effect of PVAT that is lost in obesity can be rescued using melatonin. A reduced expression of adiponectin and adiponectin receptor was observed in perivascular fat of ob/ob, whereas significant increase was observed in ob/ob treated with melatonin. Melatonin seems to exert a protective effect on arteries from both ob/ob and CLM, counteracting the adverse effect of hypoxia and iberiotoxin.
    Journal of Hypertension 04/2014; · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reactions of N 1‐acetyl‐N 2‐formyl‐5‐methoxykynuramine (AFMK) and N 1‐acetyl‐5‐methoxykynuramine (AMK) with •OH, •OOH, and •OOCCl3 radicals have been studied using the density functional theory. Three mechanisms of reaction have been considered: radical adduct formation (RAF), hydrogen transfer (HT), and single electron transfer (SET). Their relative importance for the free radical scavenging activity of AFMK and AMK has been assessed. It was found that AFMK and AMK react with •OH at diffusion‐limited rates, regardless of the polarity of the environment, which supports their excellent •OH radical scavenging activity. Both compounds were found to be also very efficient for scavenging •OOCCl3, but rather ineffective for scavenging •OOH. Regarding their relative activity, it was found that AFMK systematically is a poorer scavenger than AMK and melatonin. In aqueous solution, AMK was found to react faster than melatonin with all the studied free radicals, while in nonpolar environments, the relative efficiency of AMK and melatonin as free radical scavengers depends on the radical with which they are reacting. Under such conditions, melatonin is predicted to be a better •OOH and •OOCCl3 scavenger than AMK, while AMK is predicted to be slightly better than melatonin for scavenging •OH. Accordingly it seems that melatonin and its metabolite AMK constitute an efficient team of scavengers able of deactivating a wide variety of reactive oxygen species, under different conditions. Thus, the presented results support the continuous protection exerted by melatonin, through the free radical scavenging cascade.
    Journal of Pineal Research 04/2013; 54(3). · 7.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melatonin, an indolamine produced and secreted predominately by the pineal gland, exhibits a variety of physiological functions, possesses antioxidant and antitumor properties. But, the mechanisms for the anti-cancer effects are unknown. The present study explored the effects of melatonin on the migration of human lung adenocarcinoma A549 cells and its mechanism.
    PLoS ONE 07/2014; 9(7):e101132. · 3.53 Impact Factor