A simian immunodeficiency virus macaque model of highly active antiretroviral treatment: Viral latency in the periphery and the central nervous system

Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Current opinion in HIV and AIDS (Impact Factor: 4.68). 01/2011; 6(1):37-42. DOI: 10.1097/COH.0b013e3283412413
Source: PubMed


Here, simian immunodeficiency virus (SIV) macaque models are examined for their strengths in identifying in-vivo sites of HIV latency and persistent virus replication during highly active antiretroviral treatment (HAART). The best characterized HIV reservoir in HAART-treated persons is resting CD4 T cells in blood, although residual virus also comes from other reservoirs. Nonhuman primate/SIV models of HAART have been developed to characterize potential HIV reservoirs, particularly the central nervous system (CNS) and stem cells in bone marrow, known and potential reservoirs of latent virus that are difficult to study in humans.
Few SIV macaque models of HAART have examined plasma and cerebrospinal fluid virus decay, the number of resting CD4 T cells harboring replication-competent latent SIV, HAART-treatment effect on the CNS, or residual viral replication or viral DNA levels in that tissue. Using a consistent, accelerated SIV macaque model, we characterized peripheral viral reservoirs, including those in the CNS, among HAART-treated macaques. The SIV model reproduces latency in memory CD4 T cells throughout the body and indicates that the CNS contains a stable SIV DNA reservoir.
An SIV macaque model of HAART recapitulating viral latency, particularly in the CNS, is required to study therapeutic approaches for a functional HIV cure.

Download full-text


Available from: Lucio Gama, Jul 28, 2014
  • Source
    • "While the RT-SHIVmne model appears relevant for studying reservoirs, particularly in animals with high viremia and complete ART suppression, as with HIV-1, not all SIVs or SHIVs, including RT-SHIVmne, consistently cause CNS disease [48,49]. Studies with different viruses that provide consistent neurological disease should be employed for focusing studies on CNS reservoirs [50]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although antiretroviral therapy (ART) can suppress HIV-1 replication sufficiently to eliminate measurable plasma viremia, infected cells remain and ensure viral recrudescence after discontinuation of ART. We used a macaque model of HIV-1/AIDS to evaluate the location of infected cells during ART. Twelve macaques were infected with RT-SHIVmne, a SIV containing HIV-1 reverse transcriptase, conferring sensitivity to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Ten to fourteen weeks post-infection, 6 animals were treated with 3 or 4 antiretroviral drugs for 17-20 weeks; 6 control animals remained untreated. Viral DNA (vDNA) and RNA (vRNA) were measured in peripheral blood mononuclear cells (PBMC) and at necropsy in multiple tissues by quantitative PCR and RT-PCR. The majority of virally infected cells were located in lymphoid tissues with variable levels in the gastrointestinal tract of both treated and untreated animals. Tissue viral DNA levels correlated with week 1 plasma viremia, suggesting that tissues that harbor proviral DNA are established within the first week of infection. PBMC vDNA levels did not correlate with plasma viremia or tissue levels of vDNA. vRNA levels were high in lymphoid and gastrointestinal tissues of the untreated animals; animals on ART had little vRNA expressed in tissues and virus could not be cultured from lymph node resting CD4+ cells after 17-20 weeks on ART, indicating little or no ongoing viral replication. Strategies for eradication of HIV-1 will need to target residual virus in ART suppressed individuals, which may not be accurately reflected by frequencies of infected cells in blood.
    PLoS ONE 12/2013; 8(12):e84275. DOI:10.1371/journal.pone.0084275 · 3.23 Impact Factor
  • Source
    • "This is followed by a latent or “asymptomatic” phase. Pronounced CD4+ T cell depletion and motor deficits appear by approximately 35 days dpi and are monitored until 84 dpi, by which time more than 90% of infected macaques have developed CNS disease and AIDS [15]. Patterns of cytokine expression during SIV infection suggest that, at terminal stages of disease, high and sustained cytokine levels contribute to neurodegenerative pathologies. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The RNA-binding protein tristetraprolin (TTP) participates in normal post-transcriptional control of cytokine and chemokine gene expression, dysregulation of which contributes to the HIV-associated neurocognitive disorders. Transcriptional and post-transcriptional regulation of TTP has been described, including regulation by microRNA-29a. In the simian immunodeficiency virus (SIV) model of HIV CNS disease, control of cytokine/chemokine expression coincides with the end of acute phase infection. This control is lost during progression to disease. In this study, we assessed TTP regulation and association with cytokine regulation in the brain during SIV infection. Quantitation of TTP expression over the course of SIV infection revealed downregulation of TTP during acute infection, maintenance of relatively low levels during asymptomatic phase, and increased expression only during late-stage CNS disease, particularly in association with severe disease. The ability of miR-29a to regulate TTP was confirmed, and evidence for additional miRNA targeters of TTP was found. However, increased miR-29a expression in brain was not found to be significantly negatively correlated with TTP. Similarly, increased TTP during late-stage disease was not associated with lower cytokine expression. TTP expression is regulated during SIV infection of the CNS. The lack of significant negative correlation of miR-29a and TTP expression levels suggests that while miR-29a may contribute to TTP regulation, additional factors are involved. Reduced TTP expression during acute infection is consistent with increased cytokine production during this phase of infection, but the increases in TTP observed during late-stage infection were insufficient to halt runaway cytokine levels. While antisense inhibitors of the post-transcriptional targeters of TTP identified here could conceivably be used further to augment TTP regulation of cytokines, it is possible that high levels of TTP are undesirable. Additional research is needed to characterize members of the miRNA/TTP/cytokine regulatory network and identify nodes that may be best targeted therapeutically to ameliorate the effects of chronic inflammation in retrovirus-associated CNS disease.
    Molecular Brain 09/2013; 6(1):40. DOI:10.1186/1756-6606-6-40 · 4.90 Impact Factor
  • Source
    • "The SIV-infected macaque, on the other hand, represents an outbred, large-animal model with a natural physiology close to that of humans. Using infected macaques treated with HAART regimens, SIV latency has been observed in peripheral blood, the central nervous system [27], and various lymphoid tissues [12], making this a strong model to study viral reservoirs that persist during therapy. However, nonhuman primate studies are expensive and time-consuming, and while HIV remains latent in humans for several years, this phase is abbreviated to several months in macaques [23]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite highly effective anti-retroviral therapy, HIV is thought to persist in patients within long-lived cellular reservoirs in the form of a transcriptionally inactive (latent) integrated provirus. Lentiviral latency has therefore come to the forefront of the discussion on the possibility of a cure for HIV infection in humans. Animal models of lentiviral latency provide an essential tool to study mechanisms of latency and therapeutic manipulation. Of the three animal models that have been described, the feline immunodeficiency virus (FIV)-infected cat is the most recent and least characterized. However, several aspects of this model make it attractive for latency research, and it may be complementary to other model systems. This article reviews what is known about FIV latency and chronic FIV infection and how it compares with that of other lentiviruses. It thereby offers a framework for the usefulness of this model in future research aimed at lentiviral eradication.
    Retrovirology 07/2013; 10(1):69. DOI:10.1186/1742-4690-10-69 · 4.19 Impact Factor
Show more