The impact of enhanced cleaning within the intensive care unit on contamination of the near-patient environment with hospital pathogens: A randomized crossover study in critical care units in two hospitals

Departments of Microbiology and Infection Control, University College London Hospitals, London, United Kingdom.
Critical care medicine (Impact Factor: 6.31). 04/2011; 39(4):651-8. DOI: 10.1097/CCM.0b013e318206bc66
Source: PubMed


To determine the effect of enhanced cleaning of the near-patient environment on the isolation of hospital pathogens from the bed area and staff hands.
Prospective randomized crossover study over the course of 1 yr.
Intensive care units at two teaching hospitals.
There were 1252 patients staying during enhanced cleaning and 1331 staying during standard cleaning.
In each of six 2-month periods, one unit was randomly selected for additional twice-daily enhanced cleaning of hand contact surfaces.
Agar contact samples were taken at five sites around randomly selected bed areas, from staff hands, and from communal sites three times daily for 12 bed days per week. Patients admitted in the year commencing April 2007 were analyzed for hospital-acquired colonization and infection. Over the course of 1152 bed days, 20,736 samples were collected. Detection of environmental methicillin-resistant Staphylococcus aureus per bed-area day was reduced during enhanced cleaning phases from 82 of 561 (14.6%) to 51 of 559 (9.1%) (adjusted odds ratio, 0.59; 95% confidence interval, 0.40-0.86; p = .006). Other targeted pathogens (Acinetobacter baumannii, extended-spectrum β-lactamase-producing Gram-negative bacteria, vancomycin-resistant enterococci, and Clostridium difficile) were rarely detected. Subgroup analyses showed reduced methicillin-resistant Staphylococcus aureus contamination on doctors' hands during enhanced cleaning (3 of 425; 0.7% vs. 11 of 423; 2.6%; adjusted odds ratio, 0.26; 95% confidence interval, 0.07-0.95; p = .025) and a trend to reduction on nurses' hands (16 of 1647; 1.0% vs. 28 of 1694; 1.7%; adjusted odds ratio 0.56; 95% confidence interval, 0.29-1.08; p = .077). All 1252 critical care patients staying during enhanced and 1,331 during standard cleaning were included, but no significant effect on patient methicillin-resistant Staphylococcus aureus acquisition was observed (adjusted odds ratio, 0.98; 95% confidence interval, 0.58-1.65; p = .93).
Enhanced cleaning reduced environmental contamination and hand carriage, but no significant effect was observed on patient acquisition of methicillin-resistant Staphylococcus aureus.
ISRCTN. Identifier: 06298448.

Download full-text


Available from: Ginny Moore, Oct 06, 2015
181 Reads
  • Source
    • "Specifically, our analysis suggests that environmental surfaces are key exposure sources that contaminate the hands. A randomized crossover study on the impact of enhanced cleaning in intensive care units (ICUs) supports our findings that enhanced cleaning of high-contact surfaces not only significantly reduced the number of MRSA isolates in the environment but also on the hands of the staff [32]. These conclusions remained, even when HCWs touched patients as often as they touched surfaces, largely due to the higher die-off rates on hands and skin compared to surfaces. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of healthcare-associated infections. An important control strategy is hand hygiene; however, non-compliance has been a major problem in healthcare settings. Furthermore, modeling studies have suggested that the law of diminishing return applies to hand hygiene. Other additional control strategies such as environmental cleaning may be warranted, given that MRSA-positive individuals constantly shed contaminated desquamated skin particles to the environment. We constructed and analyzed a deterministic environmental compartmental model of MRSA fate, transport, and exposure between two hypothetical hospital rooms: one with a colonized patient, shedding MRSA; another with an uncolonized patient, susceptible to exposure. Healthcare workers (HCWs), acting solely as vectors, spread MRSA from one patient room to the other. Although porous surfaces became highly contaminated, their low transfer efficiency limited the exposure dose to HCWs and the uncolonized patient. Conversely, the high transfer efficiency of nonporous surfaces allows greater MRSA transfer when touched. In the colonized patient's room, HCW exposure occurred more predominantly through the indirect (patient to surfaces to HCW) mode compared to the direct (patient to HCW) mode. In contrast, in the uncolonized patient's room, patient exposure was more predominant in the direct (HCW to patient) mode compared to the indirect (HCW to surfaces to patient) mode. Surface wiping decreased MRSA exposure to the uncolonized patient more than daily surface decontamination. This was because wiping allowed higher cleaning frequency and cleaned more total surface area per day. Environmental cleaning should be considered as an integral component of MRSA infection control in hospitals. Given the previously under-appreciated role of surface contamination in MRSA transmission, this intervention mode can contribute to an effective multiple barrier approach in concert with hand hygiene.
    BMC Infectious Diseases 12/2013; 13(1):595. DOI:10.1186/1471-2334-13-595 · 2.61 Impact Factor
  • Source
    • "The screening procedure included 24 different sampling locations (five samples at each location), 8 in a four bedded medical intensive care unit (MITU) and 16 in a nine bedded surgical intensive care unit (SITU) (Figure 1) at the University College London Hospital (UCLH). Ward sampling was carried out with Tryptic Soy Agar (TSA) contact plates (5.5cm diameter i.e. 24cm2) in order to provide a quantitative measure on a non-selective growth medium, which would enable growth of skin and environmental flora [11,12,13]. Surfaces were sampled at these different locations in each bed space and distant to bed (door pressure panels or handles, nursing station etc). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Prevalence of healthcare associated infections remains high in patients in intensive care units (ICU), estimated at 23.4% in 2011. It is important to reduce the overall risk while minimizing the cost and disruption to service provision by targeted infection control interventions. The aim of this study was to develop a monitoring tool to analyze the spatial variability of bacteriological contamination within the healthcare environment to assist in the planning of interventions. Within three cross-sectional surveys, in two ICU wards, air and surface samples from different heights and locations were analyzed. Surface sampling was carried out with tryptic Soy Agar contact plates and Total Viable Counts (TVC) were calculated at 48hrs (incubation at 37°C). TVCs were analyzed using Poisson Generalized Additive Mixed Model for surface type analysis, and for spatial analysis. Through three cross-sectional survey, 370 samples were collected. Contamination varied from place-to-place, height-to-height, and by surface type. Hard-to-reach surfaces, such as bed wheels and floor area under beds, were generally more contaminated, but the height level at which maximal TVCs were found changed between cross-sectional surveys. Bedside locations and bed occupation were risk factors for contamination. Air sampling identified clusters of contamination around the nursing station and surface sampling identified contamination clusters at numerous bed locations. By investigating dynamic hospital wards, the methodology employed in this study will be useful to monitor contamination variability within the healthcare environment and should help to assist in the planning of interventions.
    PLoS ONE 09/2013; 8(9):e76249. DOI:10.1371/journal.pone.0076249 · 3.23 Impact Factor
  • Critical care medicine 04/2011; 39(4):881-2. DOI:10.1097/CCM.0b013e31820a4dfa · 6.31 Impact Factor
Show more