Post-transcriptional control of circadian rhythms

Department of Neuroscience, University of Texas Southwestern Medical Center, NB4.204G, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
Journal of Cell Science (Impact Factor: 5.33). 02/2011; 124(Pt 3):311-20. DOI: 10.1242/jcs.065771
Source: PubMed

ABSTRACT Circadian rhythms exist in most living organisms. The general molecular mechanisms that are used to generate 24-hour rhythms are conserved among organisms, although the details vary. These core clocks consist of multiple regulatory feedback loops, and must be coordinated and orchestrated appropriately for the fine-tuning of the 24-hour period. Many levels of regulation are important for the proper functioning of the circadian clock, including transcriptional, post-transcriptional and post-translational mechanisms. In recent years, new information about post-transcriptional regulation in the circadian system has been discovered. Such regulation has been shown to alter the phase and amplitude of rhythmic mRNA and protein expression in many organisms. Therefore, this Commentary will provide an overview of current knowledge of post-transcriptional regulation of the clock genes and clock-controlled genes in dinoflagellates, plants, fungi and animals. This article will also highlight how circadian gene expression is modulated by post-transcriptional mechanisms and how this is crucial for robust circadian rhythmicity.

Download full-text


Available from: Shihoko Kojima, Jul 02, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative splicing plays crucial roles by influencing the diversity of the transcriptome and proteome and regulating protein structure/function and gene expression. It is widespread in plants, and alteration of the levels of splicing factors leads to a wide variety of growth and developmental phenotypes. The circadian clock is a complex piece of cellular machinery that can regulate physiology and behavior to anticipate predictable environmental changes on a revolving planet. We have performed a system-wide analysis of alternative splicing in clock components in Arabidopsis thaliana plants acclimated to different steady state temperatures or undergoing temperature transitions. This revealed extensive alternative splicing in clock genes and dynamic changes in alternatively spliced transcripts. Several of these changes, notably those affecting the circadian clock genes late elongated hypocotyl (LHY) and pseudo response regulator7, are temperature-dependent and contribute markedly to functionally important changes in clock gene expression in temperature transitions by producing nonfunctional transcripts and/or inducing nonsense-mediated decay. Temperature effects on alternative splicing contribute to a decline in LHY transcript abundance on cooling, but LHY promoter strength is not affected. We propose that temperature-associated alternative splicing is an additional mechanism involved in the operation and regulation of the plant circadian clock.
    The Plant Cell 03/2012; 24(3):961-81. DOI:10.1105/tpc.111.093948 · 9.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rotation of the earth on its axis confers the property of dramatic, recurrent, rhythmic environmental change. The rhythmicity of this change from day to night and again to day imparts predictability. As a consequence, most organisms have acquired the capacity to measure time to use this time information to temporally regulate their biology to coordinate with their environment in anticipation of coming change. Circadian rhythms, endogenous rhythms with periods of ∼24h, are driven by an internal circadian clock. This clock integrates temporal information and coordinates of many aspects of biology, including basic metabolism, hormone signaling and responses, and responses to biotic and abiotic stress, making clocks central to "systems biology." This review will first address the extent to which the clock regulates many biological processes. The architecture and mechanisms of the plant circadian oscillator, emphasizing what has been learned from intensive study of the circadian clock in the model plant, Arabidopsis thaliana, will be considered. The conservation of clock components in other species will address the extent to which the Arabidopsis model will inform our consideration of plants in general. Finally, studies addressing the role of clocks in fitness will be discussed. Accumulating evidence indicates that the consonance of the endogenous circadian clock with environmental cycles enhances fitness, including both biomass accumulation and reproductive performance. Thus, increased understanding of plant responses to environmental input and to endogenous temporal cues has ecological and agricultural importance.
    Advances in genetics 01/2011; 74:105-39. DOI:10.1016/B978-0-12-387690-4.00004-0 · 5.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian circadian system is a complex hierarchical temporal network which is organized around an ensemble of uniquely coupled cells comprising the principal circadian pacemaker in the suprachiasmatic nucleus of the hypothalamus. This central pacemaker is entrained each day by the environmental light/dark cycle and transmits synchronizing cues to cell-autonomous oscillators in tissues throughout the body. Within cells of the central pacemaker and the peripheral tissues, the underlying molecular mechanism by which oscillations in gene expression occur involves interconnected feedback loops of transcription and translation. Over the past 10 years, we have learned much regarding the genetics of this system, including how it is particularly resilient when challenged by single-gene mutations, how accessory transcriptional loops enhance the robustness of oscillations, how epigenetic mechanisms contribute to the control of circadian gene expression, and how, from coupled neuronal networks, emergent clock properties arise. Here, we will explore the genetics of the mammalian circadian system from cell-autonomous molecular oscillations, to interactions among central and peripheral oscillators and ultimately, to the daily rhythms of behavior observed in the animal.
    Advances in genetics 01/2011; 74:175-230. DOI:10.1016/B978-0-12-387690-4.00006-4 · 5.41 Impact Factor