Optimizing vs. matching: response strategy in a probabilistic learning task is associated with negative symptoms of schizophrenia.

Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA.
Schizophrenia Research (Impact Factor: 4.59). 01/2011; 127(1-3):215-22. DOI: 10.1016/j.schres.2010.12.003
Source: PubMed

ABSTRACT Previous research indicates that behavioral performance in simple probability learning tasks can be organized into response strategy classifications that are thought to predict important personal characteristics and individual differences. Typically, relatively small proportion of subjects can be identified as optimizers for effectively exploiting the environment and choosing the more rewarding stimulus nearly all of the time. In contrast, the vast majority of subjects behaves sub-optimally and adopts the matching or super-matching strategy, apportioning their responses in a way that matches or slightly exceeds the probabilities of reinforcement. In the present study, we administered a two-choice probability learning paradigm to 51 individuals with schizophrenia (SZ) and 29 healthy controls (NC) to examine whether there are differences in the proportion of subjects falling into these response strategy classifications, and to determine whether task performance is differentially associated with symptom severity and neuropsychological functioning. Although the sample of SZ patients did not differ from NC in overall rate of learning or end performance, significant clinical differences emerged when patients were divided into optimizing, super-matching and matching subgroups based upon task performance. Patients classified as optimizers, who adopted the most advantageous learning strategy, exhibited higher levels of positive and negative symptoms than their matching and super-matching counterparts. Importantly, when both positive and negative symptoms were considered together, only negative symptom severity was a significant predictor of whether a subject would behave optimally, with each one standard deviation increase in negative symptoms increasing the odds of a patient being an optimizer by as much as 80%. These data provide a rare example of a greater clinical impairment being associated with better behavioral performance.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article reviews and synthesizes research on reward processing in schizophrenia, which has begun to provide important insights into the cognitive and neural mechanisms associated with motivational impairments. Aberrant cortical-striatal interactions may be involved with multiple reward processing abnormalities, including: (1) dopamine-mediated basal ganglia systems that support reinforcement learning and the ability to predict cues that lead to rewarding outcomes; (2) orbitofrontal cortex-driven deficits in generating, updating, and maintaining value representations; (3) aberrant effort-value computations, which may be mediated by disrupted anterior cingulate cortex and midbrain dopamine functioning; and (4) altered activation of the prefrontal cortex, which is important for generating exploratory behaviors in environments where reward outcomes are uncertain. It will be important for psychosocial interventions targeting negative symptoms to account for abnormalities in each of these reward processes, which may also have important interactions; suggestions for novel behavioral intervention strategies that make use of external cues, reinforcers, and mobile technology are discussed.
    Schizophrenia Bulletin 12/2013; · 8.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present review article summarizes and expands upon the discussions that were initiated during a meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS; A major goal of the CNTRICS meeting was to identify experimental procedures and measures that can be used in laboratory animals to assess psychological constructs that are related to the psychopathology of schizophrenia. The issues discussed in this review reflect the deliberations of the Motivation Working Group of the CNTRICS meeting, which included most of the authors of this article as well as additional participants. After receiving task nominations from the general research community, this working group was asked to identify experimental procedures in laboratory animals that can assess aspects of reinforcement learning and motivation that may be relevant for research on the negative symptoms of schizophrenia, as well as other disorders characterized by deficits in reinforcement learning and motivation. The tasks described here that assess reinforcement learning are the Autoshaping Task, Probabilistic Reward Learning Tasks, and the Response Bias Probabilistic Reward Task. The tasks described here that assess motivation are Outcome Devaluation and Contingency Degradation Tasks and Effort-Based Tasks. In addition to describing such methods and procedures, the present article provides a working vocabulary for research and theory in this field, as well as an industry perspective about how such tasks may be used in drug discovery. It is hoped that this review can aid investigators who are conducting research in this complex area, promote translational studies by highlighting shared research goals and fostering a common vocabulary across basic and clinical fields, and facilitate the development of medications for the treatment of symptoms mediated by reinforcement learning and motivational deficits.
    Neuroscience & Biobehavioral Reviews 08/2013; · 10.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is associated with upregulation of dopamine (DA) release in the caudate nucleus. The caudate has dense connections with the orbitofrontal cortex (OFC) via the frontostriatal loops, and both areas exhibit pathophysiological change in schizophrenia. Despite evidence that abnormalities in dopaminergic neurotransmission and prefrontal cortex function co-occur in schizophrenia, the influence of OFC DA on caudate DA and reinforcement processing is poorly understood. To test the hypothesis that OFC dopaminergic dysfunction disrupts caudate dopamine function, we selectively depleted dopamine from the OFC of marmoset monkeys and measured striatal extracellular dopamine levels (using microdialysis) and dopamine D2/D3 receptor binding (using positron emission tomography), while modeling reinforcement-related behavior in a discrimination learning paradigm. OFC dopamine depletion caused an increase in tonic dopamine levels in the caudate nucleus and a corresponding reduction in D2/D3 receptor binding. Computational modeling of behavior showed that the lesion increased response exploration, reducing the tendency to persist with a recently chosen response side. This effect is akin to increased response switching previously seen in schizophrenia and was correlated with striatal but not OFC D2/D3 receptor binding. These results demonstrate that OFC dopamine depletion is sufficient to induce striatal hyperdopaminergia and changes in reinforcement learning relevant to schizophrenia.
    The Journal of neuroscience : the official journal of the Society for Neuroscience. 05/2014; 34(22):7663-76.

Full-text (2 Sources)

Available from
May 29, 2014