Article

Pain-relieving prospects for adenosine receptors and ectonucleotidases.

Department of Cell and Molecular Physiology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA.
Trends in Molecular Medicine (Impact Factor: 10.11). 04/2011; 17(4):188-96. DOI: 10.1016/j.molmed.2010.12.006
Source: PubMed

ABSTRACT Adenosine receptor agonists have potent antinociceptive effects in diverse preclinical models of chronic pain. By contrast, the efficacy of adenosine and adenosine receptor agonists in treating pain in humans is unclear. Two ectonucleotidases that generate adenosine in nociceptive neurons were recently identified. When injected spinally, these enzymes have long-lasting adenosine A(1) receptor-dependent antinociceptive effects in inflammatory and neuropathic pain models. Furthermore, recent findings indicate that spinal adenosine A(2A) receptor activation can enduringly inhibit neuropathic pain symptoms. Collectively, these studies suggest the possibility of treating chronic pain in humans by targeting specific adenosine receptor subtypes in anatomically defined regions with agonists or with ectonucleotidases that generate adenosine.

0 Bookmarks
 · 
153 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low-level-laser therapy (LLLT) is an effective complementary treatment, especially for anti-inflammation and wound healing in which dermis or mucus mast cells (MCs) are involved. In periphery, MCs crosstalk with neurons via purinergic signals and participate in various physiological and pathophysiological processes. Whether extracellular ATP, an important purine in purinergic signaling, of MCs and neurons could be modulated by irradiation remains unknown. In this study, effects of red-laser irradiation on extracellular ATP content of MCs and dorsal root ganglia (DRG) neurons were investigated and underlying mechanisms were explored in vitro. Our results show that irradiation led to elevation of extracellular ATP level in the human mast cell line HMC-1 in a dose-dependent manner, which was accompanied by elevation of intracellular ATP content, an indicator for ATP synthesis, together with [Ca(2+)]i elevation, a trigger signal for exocytotic ATP release. In contrast to MCs, irradiation attenuated the extracellular ATP content of neurons, which could be abolished by ARL 67156, a nonspecific ecto-ATPases inhibitor. Our results suggest that irradiation potentiates extracellular ATP of MCs by promoting ATP synthesis and release and attenuates extracellular ATP of neurons by upregulating ecto-ATPase activity. The opposite responses of these two cell types indicate complex mechanisms underlying LLLT.
    Mediators of Inflammation 01/2015; 2015:630361. DOI:10.1155/2015/630361 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Extracellular nucleotides and nucleosides mediate diverse signaling effects in virtually all organs and tissues. Most models of purinergic signaling depend on functional interactions between distinct processes, including (i) the release of endogenous ATP and other nucleotides, (ii) triggering of signaling events via a series of nucleotide-selective ligand-gated P2X and metabotropic P2Y receptors as well as adenosine receptors and (iii) ectoenzymatic interconversion of purinergic agonists. The duration and magnitude of purinergic signaling is governed by a network of ectoenzymes, including the enzymes of the nucleoside triphosphate diphosphohydrolase (NTPDase) family, the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, ecto-5'-nucleotidase/CD73, tissue-nonspecific alkaline phosphatase (TNAP), prostatic acid phosphatase (PAP) and other alkaline and acid phosphatases, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). Along with "classical" inactivating ectoenzymes, recent data provide evidence for the co-existence of a counteracting ATP-regenerating pathway comprising the enzymes of the adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK/NME/NM23) families and ATP synthase. This review describes recent advances in this field, with special emphasis on purine-converting ectoenzymes as a complex and integrated network regulating purinergic signaling in such (patho)physiological states as immunomodulation, inflammation, tumorigenesis, arterial calcification and other diseases. The second part of this review provides a comprehensive overview and basic principles of major approaches employed for studying purinergic activities, including spectrophotometric Pi-liberating assays, high-performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analyses of purine substrates and metabolites, capillary electrophoresis, bioluminescent, fluorometric and electrochemical enzyme-coupled assays, histochemical staining, and further emphasizes their advantages, drawbacks and suitability for assaying a particular catalytic reaction.
    Critical Reviews in Biochemistry and Molecular Biology 11/2014; 49(6):473-97. DOI:10.3109/10409238.2014.953627 · 5.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: (N)-Methanocarba adenosine 5'-methyluronamides containing 2-arylethynyl groups were synthesized as A3 adenosine receptor (AR) agonists and screened in vivo (po) for reduction of neuropathic pain. A small N(6)-methyl group maintained binding affinity, with human > mouse A3AR and MW < 500 and other favorable physicochemical properties. Emax (maximal efficacy in a mouse chronic constriction injury pain model) of previously characterized A3AR agonist, 2-(3,4-difluorophenylethynyl)-N(6)-(3-chlorobenzyl) derivative 6a, MRS5698, was surpassed. More efficacious analogues (in vivo) contained the following C2-arylethynyl groups: pyrazin-2-yl 23 (binding Ki, hA3AR, nM 1.8), fur-2-yl 27 (0.6), thien-2-yl 32 (0.6) and its 5-chloro 33, MRS5980 (0.7) and 5-bromo 34 (0.4) equivalents, and physiologically unstable ferrocene 36, MRS5979 (2.7). 33 and 36 displayed particularly long in vivo duration (>3 h). Selected analogues were docked to an A3AR homology model to explore the environment of receptor-bound C2 and N(6) groups. Various analogues bound with μM affinity at off-target biogenic amine (M2, 5HT2A, β3, 5HT2B, 5HT2C, and α2C) or other receptors. Thus, we have expanded the structural range of orally active A3AR agonists for chronic pain treatment.
    Journal of Medicinal Chemistry 11/2014; DOI:10.1021/jm501021n · 5.48 Impact Factor

Preview

Download
1 Download
Available from