Spatial and temporal variation in the kdr allele L1014S in Anopheles gambiae s.s. and phenotypic variability in susceptibility to insecticides in Western Kenya.

Centre for Global Health Research, Kenya Medical Research Institute, PO Box.1578, Kisumu, Kenya.
Malaria Journal (Impact Factor: 3.49). 01/2011; 10:10. DOI: 10.1186/1475-2875-10-10
Source: PubMed

ABSTRACT Malaria vector control in Africa depends upon effective insecticides in bed nets and indoor residual sprays. This study investigated the extent of insecticide resistance in Anopheles gambiae s.l., Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya where ownership of insecticide-treated bed nets has risen steadily from the late 1990s to 2010. Temporal and spatial variation in the frequency of a knock down resistance (kdr) allele in A. gambiae s.s. was quantified, as was variation in phenotypic resistance among geographic populations of A. gambiae s.l.
To investigate temporal variation in kdr frequency, individual specimens of A. gambiae s.s. from two sentinel sites were genotyped using RT-PCR from 1996-2010. Spatial variation in kdr frequency, species composition, and resistance status were investigated in additional populations of A. gambiae s.l. sampled in western Kenya in 2009 and 2010. Specimens were genotyped for kdr as above and identified to species via conventional PCR. Field-collected larvae were reared to adulthood and tested for insecticide resistance using WHO bioassays.
Anopheles gambiae s.s. showed a dramatic increase in kdr frequency from 1996 - 2010, coincident with the scale up of insecticide-treated nets. By 2009-2010, the kdr L1014S allele was nearly fixed in the A. gambiae s.s. population, but was absent in A. arabiensis. Near Lake Victoria, A. arabiensis was dominant in samples, while at sites north of the lake A. gambiae s.s was more common but declined relative to A. arabiensis from 2009 to 2010. Bioassays demonstrated that A. gambiae s.s. had moderate phenotypic levels of resistance to DDT, permethrin and deltamethrin while A. arabiensis was susceptible to all insecticides tested.
The kdr L1014S allele has approached fixation in A. gambiae s.s. populations of western Kenya, and these same populations exhibit varying degrees of phenotypic resistance to DDT and pyrethroid insecticides. The near absence of A. gambiae s.s. from populations along the lakeshore and the apparent decline in other populations suggest that insecticide-treated nets remain effective against this mosquito despite the increase in kdr allele frequency. The persistence of A. arabiensis, despite little or no detectable insecticide resistance, is likely due to behavioural traits such as outdoor feeding and/or feeding on non-human hosts by which this species avoids interaction with insecticide-treated nets.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Anopheles gambiae, An. arabiensis, and An. funestus are widespread malaria vectors in Africa. Anopheles rivulorum is the next most widespread species in the An. funestus group. The role of An. rivulorum as a malaria vector has not been fully studied, although it has been found to be a minor or opportunistic transmitter of Plasmodium falciparum. METHODS: Mosquitoes were collected indoors over a 12-hour period using a light source attached to a rotating bottle collector in order to determine peak activity times and to provide DNA for meal source identification. Gravid female mosquitoes were collected indoors via an aspirator to generate F1 progeny for testing insecticidal susceptibility. Blood meal sources were identified using a multiplexed PCR assay for human and bovine cytochrome-B, and by matching sequences generated with primers targeting vertebrate and mammalian cytochrome-B segments to the Genbank database. RESULTS: Anopheles rivulorum fed on human blood in the early evening between 18:00 and 20:00, when insecticide-treated bed nets are not in use, and the presence of Plasmodium falciparum sporozoites in 0.70% of the An. rivulorum individuals tested was demonstrated. Susceptibility to permethrin, deltamethrin, and DDT is higher in An. rivulorum (84.8%, 91.4%, and 100%, respectively) than in An. funestus s.s. (36.8%, 36.4%, and 70%, respectively), whereas mortality rates for propoxur and fenitrothion were 100% for both species. Resistance to pyrethroids was very high in An. funestus s.s. and the potential of the development of high resistance was suspected in An. rivulorum. CONCLUSION: Given the tendency for An. rivulorum to be active early in the evening, the presence of P. falciparum in the species, and the potential for the development of pyrethroid resistance, we strongly advocate reconsideration of the latent ability of this species as an epidemiologically important malaria vector.
    Parasites & Vectors 10/2012; 5(1):230. · 3.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pyrethroid-resistant malaria vectors have become a serious threat for malaria control, and bed nets that reduce the development of resistance are urgently needed. Here, we tested the effects of bed nets treated with the insect growth regulator pyriproxyfen against adult female Anopheles gambiae Giles (Diptera: Culicidae) under laboratory conditions. Noninsecticidal nets made of 195 denier monofilament polyethylene with a mesh size of 75 holes per square inch (equivalent to the Olyset Net) were dipped in a 0.1, 0.01, or 0.001% (wt:vol) alcohol solution of pyriproxyfen and dried overnight. Adult females of an insecticide-susceptible An. gambiae strain were exposed to treated and untreated nets before and after a bloodmeal. Bioassays showed that females were completely sterilized after exposure to 0.1% (35 mg [AI]/m2) and 0.01% pyriproxyfen-treated nets both before and after a bloodmeal. In addition, adult longevity decreased after exposure to the pyriproxyfen-treated nets in a concentration-dependent manner. The sterilizing and life-shortening effects of pyriproxyfen on the vector mosquito indicate that the combined use of pyriproxyfen and pyrethroids on bed nets has the potential to provide better malaria control and prevent the further development of pyrethroid resistance in malaria vectors.
    Journal of Medical Entomology 09/2012; 49(5):1052-8. · 1.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A DNA-DNA hybridization method, reverse dot blot analysis (RDBA), was used to identify Anopheles gambiae s.s. and Anopheles arabiensis (Diptera: Culicidae) hosts. Of 299 blood-fed and semi-gravid An. gambiae s.l. collected from Kisian, Kenya, 244 individuals were identifiable to species; of these, 69.5% were An. arabiensis and 29.5% were An. gambiae s.s. Host identifications with RDBA were comparable with those of conventional polymerase chain reaction (PCR) followed by direct sequencing of amplicons of the vertebrate mitochondrial cytochrome b gene. Of the 174 amplicon-producing samples used to compare these two methods, 147 were identifiable by direct sequencing and 139 of these were identifiable by RDBA. Anopheles arabiensis bloodmeals were mostly (94.6%) bovine in origin, whereas An. gambiae s.s. fed upon humans more than 91.8% of the time. Tests by RDBA detected that two of 112 An. arabiensis contained blood from more than one host species, whereas PCR and direct sequencing did not. Recent use of insecticide-treated bednets in Kisian is likely to have caused the shift in the dominant vector species from An. gambiae s.s. to An. arabiensis. Reverse dot blot analysis provides an opportunity to study changes in host-feeding by members of the An. gambiae complex in response to the broadening distribution of vector control measures targeting host-selection behaviours.
    Medical and Veterinary Entomology 12/2013; 27(4):398-407. · 2.21 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014