Article

Genome-wide analysis of Ollier disease: Is it all in the genes?

Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
Orphanet Journal of Rare Diseases (Impact Factor: 3.96). 01/2011; 6:2. DOI: 10.1186/1750-1172-6-2
Source: PubMed

ABSTRACT Ollier disease is a rare, non-hereditary disorder which is characterized by the presence of multiple enchondromas (ECs), benign cartilaginous neoplasms arising within the medulla of the bone, with an asymmetric distribution. The risk of malignant transformation towards central chondrosarcoma (CS) is increased up to 35%. The aetiology of Ollier disease is unknown.
We undertook genome-wide copy number and loss of heterozygosity (LOH) analysis using Affymetrix SNP 6.0 array on 37 tumours of 28 Ollier patients in combination with expression array using Illumina BeadArray v3.0 for 7 ECs of 6 patients.
Non-recurrent EC specific copy number alterations were found at FAM86D, PRKG1 and ANKS1B. LOH with copy number loss of chromosome 6 was found in two ECs from two unrelated Ollier patients. One of these patients also had LOH at chromosome 3. However, no common genomic alterations were found for all ECs. Using an integration approach of SNP and expression array we identified loss as well as down regulation of POU5F1 and gain as well as up regulation of NIPBL. None of these candidate regions were affected in more than two Ollier patients suggesting these changes to be random secondary events in EC development. An increased number of genetic alterations and LOH were found in Ollier CS which mainly involves chromosomes 9p, 6q, 5q and 3p.
We present the first genome-wide analysis of the largest international series of Ollier ECs and CS reported so far and demonstrate that copy number alterations and LOH are rare and non-recurrent in Ollier ECs while secondary CS are genetically unstable. One could predict that instead small deletions, point mutations or epigenetic mechanisms play a role in the origin of ECs of Ollier disease.

Download full-text

Full-text

Available from: Karoly Szuhai, Aug 12, 2015
0 Followers
 · 
329 Views
  • Source
    • "CNA at FAM86D and PRKG1, which we previously identified in a subset of Ollier enchondromas (Pansuriya et al., 2011), were absent in Maffucci enchondromas. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ollier disease and Maffucci syndrome are rare, nonhereditary skeletal disorders characterized by the presence of multiple enchondromas with (Maffucci) or without (Ollier) co-existing multiple hemangiomas of soft tissue. Enchondromas can progress toward central chondrosarcomas. PTH1R mutations are found in a small subset of Ollier patients. The genetic deficit in Maffucci syndrome is unknown. Here, we report the first genome-wide analysis using Affymetrix SNP 6.0 array on Maffucci enchondromas (n = 4) and chondrosarcomas (n = 2) from four cases. Results were compared to a previously studied cohort of Ollier patients (n = 37). We found no loss of heterozygosity (LOH) or common copy number alterations shared by all enchondromas, with the exception of some copy number variations. As expected, chondrosarcomas were found to have multiple genomic imbalances. This is similar to conventional solitary and Ollier-related enchondromas and chondrosarcomas and supports the multistep genetic progression model. Expression profiling using Illumina BeadArray-v3 chip revealed that cartilaginous tumors in Maffucci patients are more similar to such tumors in Ollier patients than to sporadic cartilage tumors. Point mutations in a single gene or other copy number neutral genomic changes might play a role in enchondromagenesis.
    Genes Chromosomes and Cancer 09/2011; 50(9):673-9. DOI:10.1002/gcc.20889 · 3.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Somatic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 occur in gliomas and acute myeloid leukaemia (AML). Since patients with multiple enchondromas have occasionally been reported to have these conditions, we hypothesized that the same mutations would occur in cartilaginous neoplasms. Approximately 1200 mesenchymal tumours, including 220 cartilaginous tumours, 222 osteosarcomas and another ∼750 bone and soft tissue tumours, were screened for IDH1 R132 mutations, using Sequenom(®) mass spectrometry. Cartilaginous tumours and chondroblastic osteosarcomas, wild-type for IDH1 R132, were analysed for IDH2 (R172, R140) mutations. Validation was performed by capillary sequencing and restriction enzyme digestion. Heterozygous somatic IDH1/IDH2 mutations, which result in the production of a potential oncometabolite, 2-hydroxyglutarate, were only detected in central and periosteal cartilaginous tumours, and were found in at least 56% of these, ∼40% of which were represented by R132C. IDH1 R132H mutations were confirmed by immunoreactivity for this mutant allele. The ratio of IDH1:IDH2 mutation was 10.6 : 1. No IDH2 R140 mutations were detected. Mutations were detected in enchondromas through to conventional central and dedifferentiated chondrosarcomas, in patients with both solitary and multiple neoplasms. No germline mutations were detected. No mutations were detected in peripheral chondrosarcomas and osteochondromas. In conclusion, IDH1 and IDH2 mutations represent the first common genetic abnormalities to be identified in conventional central and periosteal cartilaginous tumours. As in gliomas and AML, the mutations appear to occur early in tumourigenesis. We speculate that a mosaic pattern of IDH-mutation-bearing cells explains the reports of diverse tumours (gliomas, AML, multiple cartilaginous neoplasms, haemangiomas) occurring in the same patient.
    The Journal of Pathology 07/2011; 224(3):334-43. DOI:10.1002/path.2913 · 7.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Secondary peripheral chondrosarcoma is the result of malignant transformation of a pre-existing osteochondroma, the most common benign bone tumor. Osteochondromas are caused by genetic abnormalities in EXT1 or EXT2: homozygous deletion of EXT1 characterizes sporadic osteochondromas (non-familial/solitary), and germline mutations in EXT1 or EXT2 combined with loss of heterozygosity define hereditary multiple osteochondromas. While cells with homozygous inactivation of EXT and wild-type cells shape osteochondromas, the cellular composition of secondary peripheral chondrosarcomas and the role of EXT in their formation have remained unclear. We report using a targeted-tiling-resolution oligo-array-CGH (array comparative genomic hybridization) that homozygous deletions of EXT1 or EXT2 are much less frequently detected (2/17, 12%) in sporadic secondary peripheral chondrosarcomas than expected based on the assumption that they originate in sporadic osteochondromas, in which homozygous inactivation of EXT1 is found in ~80% of our cases. FISH with an EXT1 probe confirmed that, unlike sporadic osteochondromas, cells from sporadic secondary peripheral chondrosarcomas predominantly retained one (hemizygous deleted loci) or both copies (wild-type) of the EXT1 locus. By immunohistochemistry, we confirm the presence of cells with dysfunctional EXT1 in sporadic osteochondromas and show cells with functional EXT1 in sporadic secondary peripheral chondrosarcomas. These immuno results were verified in osteochondromas and secondary peripheral chondrosarcomas in the setting of hereditary multiple osteochondromas. Our data therefore point to a model of oncogenesis in which the osteochondroma creates a niche in which wild-type cells with functional EXT are predisposed to acquire other mutations giving rise to secondary peripheral chondrosarcoma, indicating that EXT-independent mechanisms are involved in the pathogenesis of secondary peripheral chondrosarcoma.
    Oncogene 08/2011; 31(9):1095-104. DOI:10.1038/onc.2011.311 · 8.56 Impact Factor
Show more