Article

Transcriptional profiling of CD133(+) cells in coronary artery disease and effects of exercise on gene expression.

Genomics Core, National Institutes of Health, Bethesda, Maryland, USA.
Cytotherapy (Impact Factor: 3.1). 02/2011; 13(2):227-36. DOI: 10.3109/14653249.2010.491611
Source: PubMed

ABSTRACT Bone marrow (BM)-derived progenitor cells are under investigation for cardiovascular repair but may be altered by disease. Our aim was to identify differences in gene expression in CD133(+) cells of patients with coronary artery disease (CAD) and healthy controls, and determine whether exercise modifies gene expression.
CD133(+) cells were flow-sorted from 10 CAD patients and four controls, and total RNA was isolated for microarray-based gene expression profiling. Genes that were found to be differentially regulated in patients were analyzed further to investigate whether exercise had any normalizing effect on CD133(+) cells in CAD patients following 3 months of an exercise program.
Improvement in effort tolerance and increases in the number of CD133(+) cells were observed in CAD patients after 3 months of exercise. Gene expression analysis of the CD133(+) cells identified 82 differentially expressed genes (2-fold cut-off, 25% false-discovery rate and % present calls) in patients compared with controls, of which 59 were found to be up-regulated and 23 down-regulated. These genes were found to be involved in carbohydrate metabolism, cell cycle, cellular development and signaling, and molecular transport. Following completion of the exercise program, gene expression patterns resembled those of controls in seven of 10 patients.
Alterations in gene expression of BM-derived CD133(+) progenitor cells were found in CAD patients, which in part may be normalized by exercise.

Full-text

Available from: J. Philip Mccoy, May 28, 2015
0 Followers
 · 
105 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated whether cardiac rehabilitation participation increases circulating endothelial progenitor cells (EPCs) and benefits vasculature in patients already on stable therapy previously shown to augment EPCs and improve endothelial function. Forty-six of 50 patients with coronary artery disease completed a 36-session cardiac rehabilitation program: 45 were treated with HMG-CoA reductase inhibitor (statin) therapy > or = 1 month (average baseline low-density lipoprotein cholesterol = 81 mg/dL). Mononuclear cells isolated from blood were quantified for EPCs by flow cytometry (CD133/VEGFR-2 cells) and assayed in culture for EPC colony-forming units (CFUs). In 23 patients, EPCs were stained for annexin-V as a marker of apoptosis, and nitrite was measured in blood as an indicator of intravascular nitric oxide. Endothelial progenitor cells increased from 35 +/- 5 to 63 +/- 10 cells/mL, and EPC-CFUs increased from 0.9 +/- 0.2 to 3.1 +/- 0.6 per well (both P < .01), but 11 patients had no increase in either measure. Those patients whose EPCs increased from baseline showed significant increases in nitrite and reduction in annexin-V staining (both P < .01) versus no change in patients without increase in EPCs. Over the course of the program, EPCs increased prior to increase in nitrite in the blood. Cardiac rehabilitation in patients receiving stable statin therapy and with low-density lipoprotein cholesterol at goal increases EPC number, EPC survival, and endothelial differentiation potential, associated with increased nitric oxide in the blood. Although this response was observed in most patients, a significant minority showed neither EPC mobilization nor increased nitric oxide in the blood.
    Journal of cardiopulmonary rehabilitation and prevention 02/2007; 27(2):65-73. DOI:10.1097/01.HCR.0000265031.10145.50 · 1.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial nitric oxide synthase (eNOS) is essential for neovascularization. Here we show that the impaired neovascularization in mice lacking eNOS is related to a defect in progenitor cell mobilization. Mice deficient in eNOS (Nos3(-/-)) show reduced vascular endothelial growth factor (VEGF)-induced mobilization of endothelial progenitor cells (EPCs) and increased mortality after myelosuppression. Intravenous infusion of wild-type progenitor cells, but not bone marrow transplantation, rescued the defective neovascularization of Nos3(-/-) mice in a model of hind-limb ischemia, suggesting that progenitor mobilization from the bone marrow is impaired in Nos3(-/-) mice. Mechanistically, matrix metalloproteinase-9 (MMP-9), which is required for stem cell mobilization, was reduced in the bone marrow of Nos3(-/-) mice. These findings indicate that eNOS expressed by bone marrow stromal cells influences recruitment of stem and progenitor cells. This may contribute to impaired regeneration processes in ischemic heart disease patients, who are characterized by a reduced systemic NO bioactivity.
    Nature Medicine 12/2003; 9(11):1370-6. DOI:10.1038/nm948 · 28.05 Impact Factor
  • Source
    Journal of the American College of Cardiology 11/2006; 48(8):1588-90. DOI:10.1016/j.jacc.2006.07.032 · 15.34 Impact Factor