Left Ventricular Remodeling in Heart Failure Current Concepts in Clinical Significance and Assessment

Tufts University, Бостон, Georgia, United States
JACC. Cardiovascular imaging (Impact Factor: 6.99). 01/2011; 4(1):98-108. DOI: 10.1016/j.jcmg.2010.10.008
Source: PubMed

ABSTRACT Ventricular remodeling, first described in animal models of left ventricular (LV) stress and injury, occurs progressively in untreated patients after large myocardial infarction and in those with dilated forms of cardiomyopathy. The gross pathologic changes of increased LV volume and perturbation in the normal elliptical LV chamber configuration is driven, on a histologic level, by myocyte hypertrophy and apoptosis and by increased interstitial collagen. Each of the techniques used for tracking this process-echocardiography, radionuclide ventriculography, and cardiac magnetic resonance-carries advantages and disadvantages. Numerous investigations have demonstrated the value of LV volume measurement at a single time-point and over time in predicting clinical outcomes in patients with heart failure and in those after myocardial infarction. The structural pattern of LV remodeling and evidence of scarring on cardiac magnetic resonance have additional prognostic value. Beyond the impact of abnormal cardiac structure on cardiovascular events, the relationship between LV remodeling and clinical outcomes is likely linked through common local and systemic factors driving vascular as well as myocardial pathology. As demonstrated by a recent meta-analysis of heart failure trials, LV volume stands out among surrogate markers as strongly correlating with the impact of a particular drug or device therapy on patient survival. These findings substantiate the importance of ventricular remodeling as central in the pathophysiology of advancing heart failure and support the role of measures of LV remodeling in the clinical investigation of novel heart failure treatments.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Left ventricular (LV) remodeling, which includes ventricular dilatation and increased interstitial fibrosis after myocardial infarction (MI), is the critical process underlying the progression to heart failure. Therefore, a novel approach for preventing LV remodeling after MI is highly desirable. Yuzu is a citrus plant originating in East Asia, and has a number of cardioprotective properties such as hesperidin. However, no study has proved whether yuzu can prevent LV remodeling. The aim of this study was to determine the effects of yuzu on heart failure (HF) and its potential impact on the LV remodeling process after MI. Our in vivo study using the permanent left anterior descending coronary artery (LAD) occlusion model demonstrate that one week pre-treatment with yuzu or its major metabolite hesperidin before LAD occlusion significantly attenuated cardiac dysfunction, myocyte apoptosis and inflammation. Not only yuzu but also hesperidin inhibited caspase-3 activity, myeloperoxidase expression, α-smooth muscle actin expression, and matrix metalloproteinase-2 activity in a permanent LAD occlusion rat model. To our knowledge, our findings provide the first evidence that yuzu and hesperidin prevent MI-induced ventricular dysfunction and structural remodeling of myocardium.
    PLoS ONE 01/2015; 10(1):e110596. DOI:10.1371/journal.pone.0110596 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In a multicenter randomized double-blind study we demonstrated that Qiliqiangxin (QLQX), a traditional Chinese medicine, had a protective effect in heart failure patients. However, whether and via which mechanism QLQX attenuates cardiac remodeling after acute myocardial infarction (AMI) is still unclear. AMI was created by ligating the left anterior descending coronary artery in mice. Treating the mice in the initial 3 days after AMI with QLQX did not change infarct size. However, QLQX treatment ameliorated adverse cardiac remodeling 3 weeks after AMI including better preservation of cardiac function, decreased apoptosis and reduced fibrosis. Peroxisome proliferator-activated receptor-γ (PPARγ) was down-regulated in control animals after AMI and up-regulated by QLQX administration. Interestingly, expression of AKT, SAPK/JNK, and ERK was not altered by QLQX treatment. Inhibition of PPARγ reduced the beneficial effects of QLQX in AMI remodeling, whereas activation of PPARγ failed to provide additional improvement in the presence of QLQX, suggesting a key role for PPARγ in the effects of QLQX during cardiac remodeling after AMI. This study indicates that QLQX attenuates cardiac remodeling after AMI by increasing PPARγ levels. Taken together, QLQX warrants further investigation as as a therapeutic intervention to mitigate remodeling and heart failure after AMI.
    Scientific Reports 02/2015; 5:8374. DOI:10.1038/srep08374 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim was to examine the role of exogenous hydrogen sulfide (H2S) on cardiac remodeling in post-myocardial infarction (MI) rats. MI was induced in rats by ligation of coronary artery. After treatment with sodium hydrosulfide (NaHS, an exogenous H2S donor, 56 μM/kg·day) for 42 days, the effects of NaHS on left ventricular morphometric features, echocardiographic parameters, heme oxygenase-1 (HO-1), matrix metalloproteinases-9 (MMP-9), type I and type III collagen, vascular endothelial growth factor (VEGF), CD34, and α-smooth muscle actin (α-SMA) in the border zone of infarct area were analyzed to elucidate the protective mechanisms of exogenous H2S on cardiac function and fibrosis. Forty-two days post MI, NaHS-treatment resulted in a decrease in myocardial fibrotic area in association with decreased levels of type I, type III collagen and MMP-9 and improved cardiac function. Meanwhile, NaHS administration significantly increased cystathionine γ-lyase (CSE), HO-1, α-SMA, and VEGF expression. This effect was accompanied by an increase in vascular density in the border zone of infarcted myocardium. Our results provided the strong evidences that exogenous H2S prevented cardiac remodeling, at least in part, through inhibition of extracellular matrix accumulation and increase in vascular density.
    International Journal of Molecular Sciences 12/2014; 15(12):23212-23226. DOI:10.3390/ijms151223212 · 2.46 Impact Factor


Available from