Article

Higher-order Galilean-invariant lattice Boltzmann model for microflows: single-component gas.

Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore, Singapore.
Physical Review E (Impact Factor: 2.31). 10/2010; 82(4 Pt 2):046701. DOI: 10.1103/PhysRevE.82.046701
Source: PubMed

ABSTRACT We introduce a scheme which gives rise to additional degree of freedom for the same number of discrete velocities in the context of the lattice Boltzmann model. We show that an off-lattice D3Q27 model exists with correct equilibrium to recover Galilean-invariant form of Navier-Stokes equation (without any cubic error). In the first part of this work, we show that the present model can capture two important features of the microflow in a single component gas: Knudsen boundary layer and Knudsen Paradox. Finally, we present numerical results corresponding to Couette flow for two representative Knudsen numbers. We show that the off-lattice D3Q27 model exhibits better accuracy as compared to more widely used on-lattice D3Q19 or D3Q27 model. Finally, our construction of discrete velocity model shows that there is no contradiction between entropic construction and quadrature-based procedure for the construction of the lattice Boltzmann model.

0 Bookmarks
 · 
102 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An adaptive mesh in phase space (AMPS) methodology has been developed for solving multidimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a "tree of trees" (ToT) data structure. The r mesh is automatically generated around embedded boundaries, and is dynamically adapted to local solution properties. The v mesh is created on-the-fly in each r cell. Mappings between neighboring v-space trees is implemented for the advection operator in r space. We have developed algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive v mesh: the importance sampling, multipoint projection, and variance reduction methods. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions of hot light particles in a Lorentz gas. Our AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light-particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce the computational cost and memory usage for solving challenging kinetic problems.
    Physical Review E 12/2013; 88(6-1):063301. · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we compare two families of Lattice Boltzmann (LB) models derived by means of Gauss quadratures in the momentum space. The first one is the HLB(N;Qx,Qy,Qz) family, derived by using the Cartesian coordinate system and the Gauss-Hermite quadrature. The second one is the SLB(N;K,L,M) family, derived by using the spherical coordinate system and the Gauss-Laguerre, as well as the Gauss-Legendre quadratures. These models order themselves according to the maximum order N of the moments of the equilibrium distribution function that are exactly recovered. Microfluidics effects (slip velocity, temperature jump, as well as the longitudinal heat flux that is not driven by a temperature gradient) are accurately captured during the simulation of Couette flow for Knudsen number (kn) up to 0.25.
    International Journal of Modern Physics C 01/2014; 25(01):1340016. · 0.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The influence of the use of the generalized Hermite polynomial on the Hermite-based lattice Boltzmann (LB) construction approach, lattice sets, the thermal weights, moments and the equilibrium distribution function (EDF) are addressed. A new moment system is proposed. The theoretical possibility to obtain a unique high-order Hermite-based singel relaxation time LB model capable to exactly match some first hydrodynamic moments thermally i) on-Cartesian lattice, ii) with thermal weights in the EDF, iii) whilst the highest possible hydrodynamic moments that are exactly matched are obtained with the shortest on-Cartesian lattice sets with some fixed real-valued temperatures, is also analyzed.
    Frontiers of Physics 01/2014; 9. · 1.59 Impact Factor

Full-text

View
3 Downloads
Available from
Jun 5, 2014