Article

Detailed mechanism of squalene epoxidase inhibition by terbinafine.

BioInfoBank Institute, Poznań, Poland.
Journal of Chemical Information and Modeling (Impact Factor: 4.3). 01/2011; 51(2):455-62. DOI: 10.1021/ci100403b
Source: PubMed

ABSTRACT Squalene epoxidase (SE) is a key flavin adenine dinucleotide (FAD)-dependent enzyme of ergosterol and cholesterol biosynthetic pathways and an attractive potential target for drugs used to inhibit the growth of pathogenic fungi or to lower cholesterol level. Although many studies on allylamine drugs activity have been published during the last 30 years, up until now no detailed mechanism of the squalene epoxidase inhibition has been presented. Our study brings such a model at atomic resolution in the case of yeast Saccharomyces cerevisiae . Presented data resulting from modeling studies are in excellent agreement with experimental findings. A fully atomic three-dimensional (3D) model of squalene epoxidase (EC 1.14.99.7) from S. cerevisiae was built with the help of 3D-Jury approach and further screened based on data known from mutation experiments leading to terbinafine resistance. Docking studies followed by molecular dynamics simulations and quantum interaction energy calculations [MP2/6-31G(d)] resulted in the identification of the terbinafine-squalene epoxidase mode of interaction. In the energetically most likely orientation of terbinafine its interaction energy with the protein is ca. 120 kJ/mol. In the favorable position the terbinafine lipophilic moiety is located vertically inside the squalene epoxidase binding pocket with the tert-butyl group oriented toward its center. Such a position results in the SE conformational changes and prevents the natural substrate from being able to bind to the enzyme's active site. That would explain the noncompetitive manner of SE inhibition. We found that the strongest interaction between terbinafine and SE stems from hydrogen bonding between hydrogen-bond donors, hydroxyl group of Tyr90 and amine nitrogen atom of terbinafine. Moreover, strong attractive interactions were recorded for amino acids whose mutations resulted in terbinafine resistance. Our results, elucidating at a molecular level the mode of terbinafine inhibitory activity, can be utilized in designing more potent or selective antifungal drugs or even medicines lowering cholesterol in humans.

0 Bookmarks
 · 
116 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pneumocystis pneumonia (PCP) remains a leading opportunistic infection in patients with weakened immune system. The fungus causing the infection belongs to the genus, Pneumocystis, and its members are found in a large variety of mammals. Adaptation to the lung environment of a host with an intact immune system has been a key to its successful survival. Unfortunately, the metabolic strategies used by these fungi to grow and survive in this context are largely unknown. There were considerable impediments to standard approaches for investigation of this unique pathogen, the most problematic being the lack of a long term in vitro culture system. The absence of an ex vivo cultivation method remains today, and many fundamental scientific questions about the basic biology, metabolism, and life cycle of Pneumocystis remain unanswered. Recent progress in sequencing of the Pneumocystis carinii genome, a species infecting rats, permitted a more informative search for genes and biological pathways within this pathogen that are known to be targets for existing antifungal agents. In this work, we review the classes of antifungal drugs with respect to their potential applicability to the treatment of PCP. Classes covered in the review are the azoles, polyenes, allylamines, and echinocandins. Factors limiting the use of standard antifungal treatments and the currently available alternatives (trimethoprim-sulfamethoxazole, atovaquone, and pentamidine) are discussed. A summary of genomic sequences within Pneumocystis carinii associated with the corresponding targeted biological pathways is provided. All sequences are available via Pneumocystis Genome Project at http://pgp.cchmc.org/
    Current drug targets 08/2012; · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of the MM2QM tool in a combined docking + molecular dynamics (MD) + molecular mechanics (MM) + quantum mechanical (QM) binding affinity prediction study is presented, and the tool itself is discussed. The system of interest is Mycobacterium tuberculosis (MTB) pantothenate synthetase in complexes with three highly similar sulfonamide inhibitors, for which crystal structures are available. Starting from the structure of MTB pantothenate synthetase in the "open" conformation and following the combined docking + MD + MM + QM procedure, we were able to capture the closing of the enzyme binding pocket and to reproduce the position of the ligands with an average root mean square deviation of 1.6 Å. Protein-ligand interaction energies were reproduced with an average error lower than 10%. The discussion on the MD part and a protein flexibility importance is carried out. The presented approach may be useful especially for finding analog inhibitors or improving drug candidates. © 2012 Wiley Periodicals, Inc.
    Journal of Computational Chemistry 12/2012; · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Currently, statins are the only drugs acting on the mammalian isoprenoid pathway. The mammalian genes in this pathway are not easily amenable to genetic manipulation. Thus, it is difficult to study the effects of the inhibition of various enzymes on the intermediate and final products in the isoprenoid pathway. In fission yeast, antifungal compounds such as azoles and terbinafine are available as inhibitors of the pathway in addition to statins, and various isoprenoid pathway mutants are also available. Here in these mutants, treated with statins or antifungals, we quantified the final and intermediate products of the fission yeast isoprenoid pathway using liquid chromatography-mass spectrometry/mass spectrometry. In hmg1-1, a mutant of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), ergosterol (a final sterol product), and squalene (an intermediate pathway product), were decreased to approximately 80% and 10%, respectively, compared with that of wild-type cells. Consistently in wild-type cells, pravastatin, an HMGR inhibitor decreased ergosterol and squalene, and the effect was more pronounced on squalene. In hmg1-1 mutant and in wild-type cells treated with pravastatin, the decrease in the levels of farnesyl pyrophosphate and geranylgeranyl pyrophosphate respectively was larger than that of ergosterol but was smaller than that of squalene. In Δerg6 or Δsts1 cells, mutants of the genes involved in the last step of the pathway, ergosterol was not detected, and the changes of intermediate product levels were distinct from that of hmg1-1 mutant. Notably, in wild-type cells miconazole and terbinafine only slightly decreased ergosterol level. Altogether, these studies suggest that the pleiotropic phenotypes caused by the hmg1-1 mutation and pravastatin might be due to decreased levels of isoprenoid pyrophosphates or other isoprenoid pathway intermediate products rather than due to a decreased ergosterol level.
    PLoS ONE 01/2012; 7(11):e49004. · 3.53 Impact Factor