Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract.

Biomaterials and Tissue Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
Bioprocess and Biosystems Engineering (Impact Factor: 1.87). 01/2011; 34(5):615-9. DOI: 10.1007/s00449-010-0510-y
Source: PubMed

ABSTRACT The present study explores the reducing and capping potentials of ethanolic flower extract of the plant Nyctanthes arbortristis for the synthesis of gold nanoparticles. The extract at different volume fractions were stirred with HAuCl4 aqueous solution at 80 °C for 30 min. The UV-Vis spectroscopic analysis of the reaction products confirmed successful reduction of Au(3+) ions to gold nanoparticles. Transmission electron microscope (TEM) revealed dominant spherical morphology of the gold nanoparticles with an average diameter of 19.8 ± 5.0 nm. X-ray diffraction (XRD) study confirmed crystalline nature of the synthesized particles. Fourier transform infra-red (FTIR) and nuclear magnetic resonance (NMR) analysis of the purified and lyophilized gold nanoparticles confirmed the surface adsorption of biomolecules during preparation and caused long-term (6 months) stability. Low reaction temperature (25 °C) favored anisotropy. The strong reducing power of the flower extract can also be tested in the green synthesis of other metallic nanoparticles.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanotechnology is an exciting and powerful discipline of science; the altered properties of which have offered many new and profitable products and applications. Agriculture, food and medicine sector industries have been investing more in nanotechnology research. Plants or their extracts provide a biological synthesis route of several metallic nanoparticles which is more eco-friendly and allows a controlled synthesis with well-defined size and shape. The rapid drug delivery in the presence of a carrier is a recent development to treat patients with nanoparticles of certain metals. The engineered nanoparticles are more useful in increasing the crop production, although this issue is still in infancy. This is simply due to the unprecedented and unforeseen health hazard and environmental concern. The well-known metal ions such as zinc, iron and copper are essential constituents of several enzymes found in the human system even though the indiscriminate use of similar other metal nanoparticle in food and medicine without clinical trial is not advisable. This review is intended to describe the novel phytosynthesis of metal and metal oxide nanoparticles with regard to their shape, size, structure and diverse application in almost all fields of medicine, agriculture and technology. We have also emphasized the concept and controversial mechanism of green synthesis of nanoparticles.
    Nanoscale Research Letters 05/2014; · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While metal nanoparticles are being increasingly used in many sectors of the economy, there is growing interest in the biological and environmental safety of their production. The main methods for nanoparticle production are chemical and physical approaches that are often costly and potentially harmful to the environment. The present review is devoted to the possibility of metal nanoparticle synthesis using plant extracts. This approach has been actively pursued in recent years as an alternative, efficient, inexpensive, and environmentally safe method for producing nanoparticles with specified properties. This review provides a detailed analysis of the various factors affecting the morphology, size, and yield of metal nanoparticles. The main focus is on the role of the natural plant biomolecules involved in the bioreduction of metal salts during the nanoparticle synthesis. Examples of effective use of exogenous biomatrices (peptides, proteins, and viral particles) to obtain nanoparticles in plant extracts are discussed.
    Acta naturae. 01/2014; 6(1):35-44.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Galactoxyloglucan polysaccharide (PST001), isolated from the seed kernels of Tamarindus indica (Ti), was used both as reducing and capping agent for the preparation of gold nanoparticles (PST-Gold) of 20nm size. The present study evaluated the anticancer effects of the PST-Gold nanoparticles both in vitro and in vivo. The cytotoxicity was evaluated in the murine cancer cell lines, Dalton's lymphoma ascites (DLA) and Ehrlich's ascites carcinoma (EAC). Galactoxyloglucan-gold nanoparticles (PST-Gold) not only retained the anticancer effects of PST001, but also showed enhanced cytotoxicity via induction of apoptosis even at lower doses and lesser incubation times. In vivo antitumor activity was tested in DLA and EAC murine ascites and EAC solid-tumor syngeneic mouse models. PST-Gold nanoparticles reduced tumor burden and increased median survival and life span significantly in both tumor models compared to the controls. The PST-Gold nanoparticles were very effective as a chemopreventive agent, showing the best overall response when administered prior to tumor induction. In the case of solid tumors, intratumoral administration of the PST-Gold nanoparticles yielded significant results with regard to survival and increment in lifespan as compared to intraperitoneal mode of drug administration. Further studies in higher animal models and in patients at high-risk for recurrence are warranted to fully explore and develop the potential of PST-Gold nanoconjugates as a chemopreventive and therapeutic anti-cancer agent.
    Colloids and surfaces B: Biointerfaces 01/2014; 116C:219-227. · 3.55 Impact Factor


Available from
May 15, 2014