HIV-1 infection in the female reproductive tract: role of interactions between HIV-1 and genital epithelial cells.

Department of Pathology and Molecular Medicine, Michael DeGroote Center for Learning and Discovery, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada.
American Journal Of Reproductive Immunology (Impact Factor: 3.32). 03/2011; 65(3):253-60. DOI: 10.1111/j.1600-0897.2010.00965.x
Source: PubMed

ABSTRACT Despite recent progress in understanding the mucosal transmission of human immunodeficiency virus (HIV)-1, the immediate events following transmission in the female genital tract are incompletely understood. Recent in vivo studies in primate models indicate that HIV-1 transmission may occur in the upper or lower genital tract and the initial HIV-1 replication occurs primarily in the target T cells and in some subsets of DCs localized in the genital tract. However, the principal mechanism(s) that allow the virus to cross the primary barrier of genital epithelial cells (GECs) are still unclear. A number of pathways have been proposed as possible ways that HIV-1 could use to cross the epithelium. However, little attention has been paid to the response of GECs to HIV-1. We recently demonstrated that exposure to HIV-1 rapidly upregulates a wide array of pro-inflammatory cytokine production by GECs. Among these cytokines, tumour necrosis factor (TNF)-α impaired the tight junction barrier allowing HIV-1 and luminal bacteria to translocate across the epithelium. This study illustrated that GECs are dynamically active cells that mount rapid host responses to HIV-1, independent of viral replication. Cytokine responses of GECs could play a critical role in HIV transmission and replication. Further understanding of GEC responses to HIV-1 and their regulation could be critical to understanding HIV-1 transmission dynamics during heterosexual transmission.

  • American Journal of Respiratory and Critical Care Medicine 02/2015; 191(4):370-371. DOI:10.1164/rccm.201501-0011ED · 11.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that Epstein-Barr virus (EBV)-encoded dUTPase can modulate innate immune responses through the activation of TLR2 and NF-κB signaling. However, whether this novel immune function of the dUTPase is specific for EBV or a common property of the Herpesviridae family is not known. In this study, we demonstrate that the purified viral dUTPases encoded by herpes simplex virus type 2 (HSV-2), human herpesvirus-6A (HHV-6A), human herpesvirus-8 (HHV-8) and varicella-zoster virus (VZV) differentially activate NF-κB through ligation of TLR2/TLR1 heterodimers. Furthermore, activation of NF-κB by the viral dUTPases was inhibited by anti-TLR2 blocking antibodies (Abs) and the over-expression of dominant-negative constructs of TLR2, lacking the TIR domain, and MyD88 in human embryonic kidney 293 cells expressing TLR2/TLR1. In addition, treatment of human dendritic cells and PBMCs with the herpesviruses-encoded dUTPases from HSV-2, HHV-6A, HHV-8, and VZV resulted in the secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, IL-12, TNF-α, IL-10, and IFN-γ. Interestingly, blocking experiments revealed that the anti-TLR2 Ab significantly reduced the secretion of cytokines by the various herpesviruses-encoded dUTPases (p < 0.05). To our knowledge, this is the first report demonstrating that a non-structural protein encoded by herpesviruses HHV-6A, HHV-8, VZV and to a lesser extent HSV-2 is a pathogen-associated molecular pattern. Our results reveal a novel function of the virus-encoded dUTPases, which may be important to the pathophysiology of diseases caused by these viruses. More importantly, this study demonstrates that the immunomodulatory functions of dUTPases are a common property of the Herpesviridae family and thus, the dUTPase could be a potential target for the development of novel therapeutic agents against infections caused by these herpesviruses.
    Frontiers in Microbiology 09/2014; 5:504. DOI:10.3389/fmicb.2014.00504 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Sexual transmission is the main route of HIV-1 infection and the CCR5-using (R5) HIV-1 is predominantly transmitted, even though CXCR4-using (X4) HIV-1 is often abundant in chronic HIV-1 patients. The mechanisms underlying this tropism selection are unclear. Mucosal Langerhans cells (LCs) are the first immune cells to encounter HIV-1 and here we investigated the role of LCs in selection of R5 HIV-1 using an ex vivo epidermal and vaginal transmission models. Results Immature LCs were productively infected by X4 as well as R5 HIV-1. However, only R5 but not X4 viruses were selectively transmitted by immature LCs to T cells. Transmission of HIV-1 was depended on de novo production of HIV-1 in LCs, since it could be inhibited by CCR5 fusion inhibitors as well as reverse transcription inhibitors. Notably, the activation state of LCs affected the restriction in X4 HIV-1 transmission; immune activation by TNF facilitated transmission of X4 as well as R5 HIV-1. Conclusions These data suggest that LCs play a crucial role in R5 selection and that immature LCs effectively restrict X4 at the level of transmission.
    Retrovirology 07/2014; 11(1):52. DOI:10.1186/1742-4690-11-52 · 4.77 Impact Factor


1 Download