Article

Structure and function of YghU, a nu-class glutathione transferase related to YfcG from Escherichia coli

Department of Biochemistry, Center in Molecular Toxicology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232-0146, United States.
Biochemistry (Impact Factor: 3.01). 02/2011; 50(7):1274-81. DOI: 10.1021/bi101861a
Source: PubMed

ABSTRACT The crystal structure (1.50 Å resolution) and biochemical properties of the GSH transferase homologue, YghU, from Escherichia coli reveal that the protein is unusual in that it binds two molecules of GSH in each active site. The crystallographic observation is consistent with biphasic equilibrium binding data that indicate one tight (K(d1) = 0.07 ± 0.03 mM) and one weak (K(d2) = 1.3 ± 0.2 mM) binding site for GSH. YghU exhibits little or no GSH transferase activity with most typical electrophilic substrates but does possess a modest catalytic activity toward several organic hydroperoxides. Most notably, the enzyme also exhibits disulfide-bond reductase activity toward 2-hydroxyethyl disulfide [k(cat) = 74 ± 6 s(-1), and k(cat)/K(M)(GSH) = (6.6 ± 1.3) × 10(4) M(-1) s(-1)] that is comparable to that previously determined for YfcG. A superposition of the structures of the YghU·2GSH and YfcG·GSSG complexes reveals a remarkable structural similarity of the active sites and the 2GSH and GSSG molecules in each. We conclude that the two structures represent reduced and oxidized forms of GSH-dependent disulfide-bond oxidoreductases that are distantly related to glutaredoxin 2. The structures and properties of YghU and YfcG indicate that they are members of the same, but previously unidentified, subfamily of GSH transferase homologues, which we suggest be called the nu-class GSH transferases.

0 Followers
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The superfamily of glutathione S-transferases has been the subject of extensive study; however, Actinobacteria produce mycothiol (MSH) in place of glutathione, and no mycothiol S-transferase (MST) has been identified. Using mycothiol and monochlorobimane as substrates, an MST activity was detected in extracts of Mycobacterium smegmatis and purified sufficiently to allow identification of MSMEG_0887, a member the DUF664 family of the DinB superfamily, as the MST. The identity of the M. smegmatis and homologous Mycobacterium tuberculosis (Rv0443) enzymes was confirmed by cloning, and the expressed proteins were found to be active with MSH but not bacillithiol (BSH) or glutathione (GSH). Bacillus subtilis YfiT is another member of the DinB superfamily, but this bacterium produces BSH. The YfiT protein was shown to have S-transferase activity with monochlorobimane when assayed with BSH but not with MSH or GSH. Enterococcus faecalis EF_3021 shares some homology with MSMEG_0887, but En. faecalis produces GSH but not MSH or BSH. Cloned and expressed EF_0321 was active with monochlorobimane and GSH but not with MSH or BSH. MDMPI_2 is another member of the DinB superfamily and has been previously shown to have mycothiol-dependent maleylpyruvate isomerase activity. Three of the eight families of the DinB superfamily include proteins shown to catalyze thiol-dependent metabolic or detoxification activities. Because more than two-thirds of the sequences assigned to the DinB superfamily are members of these families, it seems likely that such activity is dominant in the DinB superfamily.
    Biochemistry 11/2011; 50(49):10751-60. DOI:10.1021/bi201460j · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5) dissemination of data via the EFI's Website, http://enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and pharmaceutical efforts.
    Biochemistry 11/2011; 50(46):9950-62. DOI:10.1021/bi201312u · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The S. mutans LrgA/B holin-like proteins have been shown to affect biofilm formation and oxidative stress tolerance, and are regulated by oxygenation, glucose levels, and by the LytST two-component system. In this study, we sought to determine if LytST was involved in regulating lrgAB expression in response to glucose and oxygenation in S. mutans. Results Real-time PCR revealed that growth phase-dependent regulation of lrgAB expression in response to glucose metabolism is mediated by LytST under low-oxygen conditions. However, the effect of LytST on lrgAB expression was less pronounced when cells were grown with aeration. RNA expression profiles in the wild-type and lytS mutant strains were compared using microarrays in early exponential and late exponential phase cells. The expression of 40 and 136 genes in early-exponential and late exponential phase, respectively, was altered in the lytS mutant. Although expression of comYB, encoding a DNA binding-uptake protein, was substantially increased in the lytS mutant, this did not translate to an effect on competence. However, a lrgA mutant displayed a substantial decrease in transformation efficiency, suggestive of a previously-unknown link between LrgA and S. mutans competence development. Finally, increased expression of genes encoding antioxidant and DNA recombination/repair enzymes was observed in the lytS mutant, suggesting that the mutant may be subjected to increased oxidative stress during normal growth. Although the intracellular levels of reaction oxygen species (ROS) appeared similar between wild-type and lytS mutant strains after overnight growth, challenge of these strains with hydrogen peroxide (H2O2) resulted in increased intracellular ROS in the lytS mutant. Conclusions Overall, these results: (1) Reinforce the importance of LytST in governing lrgAB expression in response to glucose and oxygen, (2) Define a new role for LytST in global gene regulation and resistance to H2O2, and (3) Uncover a potential link between LrgAB and competence development in S. mutans.
    BMC Microbiology 09/2012; 12(1):187. DOI:10.1186/1471-2180-12-187 · 2.98 Impact Factor
Show more

Preview

Download
0 Downloads
Available from