Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status.

State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
Journal of Experimental Botany (Impact Factor: 5.79). 01/2011; 62(7):2319-32. DOI: 10.1093/jxb/erq403
Source: PubMed

ABSTRACT The high affinity nitrate transport system (HATS) plays an important role in rice nitrogen acquisition because, even under flooded anaerobic cultivation when NH(4)(+) dominates, significant nitrification occurs on the root surface. In the rice genome, four NRT2 and two NAR2 genes encoding HATS components have been identified. One gene OsNRT2.3 was mRNA spliced into OsNRT2.3a and OsNRT2.3b and OsNAR2.1 interacts with OsNRT2.1/2.2 and OsNRT2.3a to provide nitrate uptake. Using promoter-GUS reporter plants and semi-quantitative RT-PCR analyses, it was observed that OsNAR2.1 was expressed mainly in the root epidermal cells, differently from the five OsNRT2 genes. OsNAR2.1, OsNRT2.1, OsNRT2.2, and OsNRT2.3a were up-regulated by nitrate and suppressed by NH(4)(+) and high root temperature (37 °C). Expression of all these genes was increased by light or external sugar supply. Root transcripts of OsNRT2.3b and OsNRT2.4 were much less abundant and not affected by temperature. Expression of OsNRT2.3b was insensitive to the form of N supply. Expression of OsNRT2.4 responded to changes in auxin supply unlike all the other NRT2 genes. A region from position -311 to -1, relative to the translation start site in the promoter region of OsNAR2.1, was found to contain the cis-element(s) necessary for the nitrate-, but not light- and sugar-dependent activation. However, it was difficult to define a conserved cis-element in the promoters of the nitrate-regulated OsNRT2/OsNAR2 genes. The results imply distinct physiological functions for each OsNRT2 transporter, and differential regulation pathways by N and C status.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ANR1 MADS-box gene in Arabidopsis is a key gene involved in regulating lateral root development in response to the external nitrate supply. There are five ANR1-like genes in Oryza sativa, OsMADS23, OsMADS25, OsMADS27, OsMADS57 and OsMADS61, all of which belong to the AGL17 clade. Here we have investigated the responsiveness of these genes to fluctuations in nitrogen (N), phosphorus (P) and sulfur (S) mineral nutrient supply. The MADS-box genes have been shown to have a range of responses to the nutrient supply. The expression of OsMADS61 was transiently induced by N deprivation but was not affected by re-supply with various N sources. The expression of OsMADS25 and OsMADS27 was induced by re-supplying with NO3- and NH4NO3, but downregulated by NH4+. The expression of OsMADS57 was significantly downregulated by N starvation and upregulated by 3 h NO3- re-supply. OsMADS23 was the only gene that showed no response to either N starvation nor NO3- re-supply. OsMADS57 was the only gene not regulated by P fluctuation whereas the expression of OsMADS23, OsMADS25 and OsMADS27 was downregulated by P starvation and P re-supply. In contrast, all five ANR1-related genes were significantly upregulated by S starvation. Our results also indicated that there were interactions among nitrate, sulphate and phosphate transporters in rice.
    PLoS ONE 01/2014; 9(8):e105597. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In higher plants, NO3- can induce its own uptake and the magnitude of this induction is positively related to the external anion concentration. This phenomenon has been characterized both in herbaceous and woody plants. Here, different adaptation strategies of roots from two maize inbred lines differing in NUE and exhibiting different timing of induction were discussed by investigating NO3--induced changes in their transcriptome. Lo5 line (high NUE) showing the maximum rate of NO3- uptake 4 h after the provision of 200 μM NO3- treatment modulated a higher number of transcripts relative to T250 (low NUE) that peaked after 12 h. The two inbred lines share only 368 transcripts that are modulated by the treatment with NO3- and behaved differently when transcripts involved in anion uptake and assimilation were analyzed. T250 line responded to the NO3- induction modulating this group of genes as reported for several plant species. On the contrary the Lo5 line did not exhibit during the induction changes in this set of genes. Obtained data suggest the importance of exploring the physiological and molecular variations among different maize genotypes in the response to environmental clues like NO3- provision of in order to understand mechanisms underlying NUE.
    Journal of Integrative Plant Biology 05/2014; · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitrate transporters are an important component of plant growth and development. Chrysanthemum morifolium is an important ornamental species, for which a sufficient supply of nitrogenous fertilizer is required to maintain economic yields. In this study, the full-length cDNA of the nitrate transporter genes CmNRT2 and CmNAR2 were isolated. CmNRT2 transcript accumulation was inducible by both nitrate and ammonium, but the latter ion down-regulated the transcript accumulation of CmNAR2. CmNRT2 might be a plasma membrane localized protein, while CmNAR2 was distributed throughout the cell. CmNAR2 was shown to interact with CmNRT2 by in vitro and in vivo assays. Arabidopsis thaliana plants heterologously expressing CmNRT2 showed an increased rate of nitrate influx, while this trait was unaltered in plants expressing CmNAR2. Double transformants (CmNRT2 plus CmNAR2) exhibited an enhanced rate of nitrate influx into the root. Our data indicated that the interaction of CmNAR2 with CmNRT2 contributed to the uptake of nitrate.
    Scientific reports. 01/2014; 4:5833.


Available from
Jun 4, 2014