Article

Blocking the NOTCH Pathway Inhibits Vascular Inflammation in Large-Vessel Vasculitis

Lowance Center for Human Immunology and Rheumatology, Emory University, Atlanta, GA, USA.
Circulation (Impact Factor: 14.95). 01/2011; 123(3):309-18. DOI: 10.1161/CIRCULATIONAHA.110.936203
Source: PubMed

ABSTRACT Giant cell arteritis is a granulomatous vasculitis of the aorta and its branches that causes blindness, stroke, and aortic aneurysm. CD4 T cells are key pathogenic regulators, instructed by vessel wall dendritic cells to differentiate into vasculitic T cells. The unique pathways driving this dendritic cell-T-cell interaction are incompletely understood, but may provide novel therapeutic targets for a disease in which the only established therapy is long-term treatment with high doses of corticosteroids.
Immunohistochemical and gene expression analyses of giant cell arteritis-affected temporal arteries revealed abundant expression of the NOTCH receptor and its ligands, Jagged1 and Delta1. Cleavage of the NOTCH intracellular domain in wall-infiltrating T cells indicated ongoing NOTCH pathway activation in large-vessel vasculitis. NOTCH activation did not occur in small-vessel vasculitis affecting branches of the vasa vasorum tree. We devised 2 strategies to block NOTCH pathway activation: γ-secretase inhibitor treatment, preventing nuclear translocation of the NOTCH intracellular domain, and competing for receptor-ligand interactions through excess soluble ligand, Jagged1-Fc. In a humanized mouse model, NOTCH pathway disruption had strong immunosuppressive effects, inhibiting T-cell activation in the early and established phases of vascular inflammation. NOTCH inhibition was particularly effective in downregulating Th17 responses, but also markedly suppressed Th1 responses.
Blocking NOTCH signaling depleted T cells from the vascular infiltrates, implicating NOTCH- NOTCH ligand interactions in regulating T-cell retention and survival in vessel wall inflammation. Modulating the NOTCH signaling cascade emerges as a promising new strategy for immunosuppressive therapy of large-vessel vasculitis.

1 Follower
 · 
122 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: γ-Secretase is a distinct proteolytic complex required for the activation of many transmembrane proteins. The cleavage of substrates by γ-secretase plays diverse biological roles in producing essential products for the organism. More than 90 transmembrane proteins have been reported to be substrates of γ-secretase. Two of the most widely known and studied of these substrates are the amyloid precursor protein (APP) and the Notch receptor, which are precursors for the generation of amyloid-β (Aβ) and the Notch intracellular domain (NICD), respectively. The wide spectrum of γ-secretase substrates has made analyses of the pathology of γ-secretase-related diseases and underlying mechanisms challenging. Inflammation is an important aspect of disease pathology that requires an in-depth analysis. γ-Secretase may contribute to disease development or progression by directly increasing and regulating production of pro-inflammatory cytokines. This review summarizes recent evidence for a role of γ-secretase in inflammatory diseases, and discusses the potential use of γ-secretase inhibitors as an effective future treatment option.
    Pharmacology [?] Therapeutics 11/2014; 147. DOI:10.1016/j.pharmthera.2014.11.005 · 7.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Macrophage polarization is emerging as an important area of research for the development of novel therapeutics to treat inflammatory diseases. Within the current study, the role of Notch1R in macrophage differentiation was investigated as well as downstream effects in THP-1 monocytes cultured in "inflammation mimicry" media. Interference of Notch signaling was achieved using either the pharmaceutical inhibitor DAPT or Notch1R SiRNA and Notch1R expression, macrophage phenotypes, and anti- and pro-inflammatory cytokine expression were evaluated. Data presented shows that Notch1R expression on M1 macrophages as well as M1 macrophage differentiation is significantly elevated during cellular stress (p<0.05). However, under identical culture conditions, interference to Notch signaling via Notch1R inhibition mitigated these results as well as promoted M2 macrophage differentiation. Moreover, when subjected to cellular stress, macrophage secretion of pro-inflammatory cytokines was significantly heightened (p<0.05). Importantly, Notch1R inhibition not only diminished pro-inflammatory cytokine secretion but also enhanced anti-inflammatory protein release (p<0.05). Our data suggest that Notch1R plays a pivotal role in M1 macrophage differentiation and heightened inflammatory responses. Therefore, we conclude that inhibition of Notch1R and subsequent downstream signaling enhances monocyte to M2 polarized macrophages outcomes and promotes anti-inflammatory mediation during cellular stress.
    AJP Heart and Circulatory Physiology 09/2014; 307(11). DOI:10.1152/ajpheart.00896.2013 · 4.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The clinical use of extracorporeal photopheresis (ECP) for accepted indications such as graft-versus-host disease, transplant rejection, and cutaneous T-cell lymphoma continues to increase. Expanded applications for ECP, such as the treatment of select autoimmune diseases, are being explored. Extracorporeal photopheresis's capacity to both immunotolerize in the autoreactive setting, while immunizing against a lymphoma is unusual and suggestive of a unique mechanism. It is likely that ECP's induction of dendritic cells is key to its efficacy in both of these settings, but exactly how ECP impacts other immune components and their interactions is not fully understood. Further basic science research is necessary to elucidate how these dissimilar cellular activities are functionally integrated. On the clinical side, collaborative multicenter trials designed to recognize the principal variables controlling therapeutic responses and improve prognostic indicators may enable tailoring devices, treatment schedules, and doses to the needs of the individual patients or diseases. This review describes our current understanding of how ECP influences the immune system, reviews the existing clinical applications of ECP, and explores areas for future basic science and clinical research as presented at the National Institutes of Health State of the Science Symposium in Therapeutic Apheresis in November 2012. Published by Elsevier Inc.
    Transfusion Medicine Reviews 10/2014; 29(1). DOI:10.1016/j.tmrv.2014.09.004 · 4.54 Impact Factor

Full-text (2 Sources)

Download
54 Downloads
Available from
May 21, 2014