Article

Potential of two Metschnikowia pulcherrima (yeast) strains for in vitro biodegradation of patulin.

Agroinnova, Centre of Competence for the Innovation in the Agro-Environmental Sector, Universita degli Studi di Torino, via L. da Vinci 44, 10095 Grugliasco, Torino, Italy.
Journal of food protection (Impact Factor: 1.83). 01/2011; 74(1):154-6. DOI: 10.4315/0362-028X.JFP-10-331
Source: PubMed

ABSTRACT Patulin contamination of apple and other fruit-based foods and beverages is an important food safety issue, as consumption of these commodities throughout the world is great. Studies are therefore necessary to reduce patulin levels to acceptable limits or undetectable levels to minimize toxicity. This study was undertaken to investigate the efficacy of two Metschnikowia pulcherrima strains (MACH1 and GS9) on biodegradation of patulin under in vitro conditions. These yeast strains were tested for their abilities to degrade patulin in liquid medium amended with 5, 7.5, 10, and 15 μg/ml patulin and a yeast cell concentration of 1 × 10(8) cells per ml at 25°C. Of the two strains tested, MACH1 completely (100%) reduced patulin levels within 48 h, and GS9 within 72 h, at all concentrations of patulin. MACH1 effectively degraded the patulin within 24 h by 83 to 87.4%, and GS9 by 73 to 75.6% at 48 h, regardless of concentration. Patulin was not detected in yeast cell walls. This indicates that yeast cell walls did not absorb patulin, and that they completely degraded the toxin. Patulin had no influence on yeast cell concentration during growth. Therefore, these yeast strains could potentially be used for the reduction of patulin in naturally contaminated fruit juices. To our knowledge, this is the first report regarding the potential of M. pulcherrima strains for patulin biodegradation.

0 Bookmarks
 · 
265 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is a worldwide trend to understand the impact of non-Saccharomyces yeast species on the process of winemaking. Although the predominant species at the end of the fermentation is Saccharomyces cerevisiae, several non-Saccharomyces species present during the first days of the process can produce and/or release aromas that improve the bouquet and complexity of the final wine. Since no genomic sequences are available for the predominant non-Saccharomyces species selected from grapes or musts (Hanseniaspora uvarum, Hanseniaspora vineae, Hanseniaspora opuntiae, Metschnikowia pulcherrima, Candida zemplinina), a reproducible PCR method was devised to discriminate strains at the subspecies level. The method combines different oligonucleotides based on tandem repeats with a second oligonucleotide based on a conserved tRNA region, specific for ascomycetes. Tandem repeats are randomly dispersed in all eukaryotic genomes and tRNA genes are conserved and present in several copies in different chromosomes. As an example, the method was applied to discriminate native M. pulcherrima strains but it could be extended to differentiate strains from other non-Saccharomyces species. The biodiversity of species and strains found in the grape ecosystem is a potential source of new enzymes, fungicides and/or novel sustainable methods for biological control of phytopathogens.
    Applied Microbiology and Biotechnology 11/2011; 93(2):807-14. · 3.81 Impact Factor