Article

Measuring the burden of arboviral diseases: the spectrum of morbidity and mortality from four prevalent infections

Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, USA. .
Population Health Metrics (Impact Factor: 2.11). 01/2011; 9(1):1. DOI: 10.1186/1478-7954-9-1
Source: PubMed

ABSTRACT Globally, arthropod-borne virus infections are increasingly common causes of severe febrile disease that can progress to long-term physical or cognitive impairment or result in early death. Because of the large populations at risk, it has been suggested that these outcomes represent a substantial health deficit not captured by current global disease burden assessments.
We reviewed newly available data on disease incidence and outcomes to critically evaluate the disease burden (as measured by disability-adjusted life years, or DALYs) caused by yellow fever virus (YFV), Japanese encephalitis virus (JEV), chikungunya virus (CHIKV), and Rift Valley fever virus (RVFV). We searched available literature and official reports on these viruses combined with the terms "outbreak(s)," "complication(s)," "disability," "quality of life," "DALY," and "QALY," focusing on reports since 2000. We screened 210 published studies, with 38 selected for inclusion. Data on average incidence, duration, age at onset, mortality, and severity of acute and chronic outcomes were used to create DALY estimates for 2005, using the approach of the current Global Burden of Disease framework.
Given the limitations of available data, nondiscounted, unweighted DALYs attributable to YFV, JEV, CHIKV, and RVFV were estimated to fall between 300,000 and 5,000,000 for 2005. YFV was the most prevalent infection of the four viruses evaluated, although a higher proportion of the world's population lives in countries at risk for CHIKV and JEV. Early mortality and long-term, related chronic conditions provided the largest DALY components for each disease. The better known, short-term viral febrile syndromes caused by these viruses contributed relatively lower proportions of the overall DALY scores.
Limitations in health systems in endemic areas undoubtedly lead to underestimation of arbovirus incidence and related complications. However, improving diagnostics and better understanding of the late secondary results of infection now give a first approximation of the current disease burden from these widespread serious infections. Arbovirus control and prevention remains a high priority, both because of the current disease burden and the significant threat of the re-emergence of these viruses among much larger groups of susceptible populations.

0 Followers
 · 
160 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arthropod-borne viruses significantly impact human health. They span multiple families, all of which include viruses not known to cause disease. Characterizing these representatives could provide insights into the origins of their disease-causing counterparts. Field-caught Aedes aegypti mosquitoes from Nakhon Nayok, Thailand, underwent metagenomic shotgun sequencing to reveal a Bunyavirus closely related to Phasi Charoen (PhaV) virus, isolated in 2009 from Ae. aegypti near Bangkok. Phylogenetic analysis of this virus suggests it is basal to the Phlebovirus genus thus making it ideally positioned phylogenetically for understanding the evolution of these clinically important viruses. Genomic analysis finds that a gene necessary for virulence in vertebrates, but not essential for viral replication in arthropods, is missing. The sequencing of this phylogenetically-notable and genomically-unique Phlebovirus from wild mosquitoes exemplifies the utility and efficacy of metagenomic shotgun sequencing for virus characterization in arthropod vectors of human diseases.
    Virology 09/2014; s 464–465:312–319. DOI:10.1016/j.virol.2014.06.036 · 3.28 Impact Factor
  • Source
    ISBT Science Series 07/2011; 6(1). DOI:10.1111/j.1751-2824.2011.01453.x
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent outbreak of Chikungunya virus in Thailand caused a rheumatic fever associated with considerable morbidity and fatalities. Thus, it is important to identify biomarker(s) of severe disease induced by this threatening arbovirus. Putative biomarkers in cases of chikungunya fever during an outbreak in the southern part of Thailand in 2009-2010 were identified. Sixty-two patients who had developed fever and myalgia, with or without arthralgia/arthritis, were enrolled and grouped into severe chikungunya fever (CHIKF) (n= 15), mild CHIKF (n= 20) and non-CHIKF (n= 27) to investigate circulating immunological mediators that might serve as markers of severity. Blood samples were taken at presentation (day 1) and 30 days later (day 30) and plasma concentrations of interleukin (IL)-1β, IL-6, IL-8, IL-17, tumor necrosis factor-alpha, monocyte chemotactic protein-1 (MCP-1), matrix metalloproteinase-1, tissue inhibitor of matrix metalloproteinase-1 and viral load were measured by ELISA. On day 1, severe CHIKF and mild CHIKF groups had viral loads of 10(8.5) and 10(8.3) of RNA copies/mL, respectively. At presentation, all CHIKF patients had circulating concentrations of IL-6 and MCP-1 higher than did non-CHIKF patients, whereas amongst the CHKF patients, the severe CHIKF patients had higher IL-6 concentrations than did mild CHIKF patients. Interestingly, severe CHIKF patients had significantly lower concentrations of circulating IL-8 than the other groups of patients, suggesting that high concentrations of IL-6 and MCP-1 with low concentrations of IL-8 may be a determinant of severe chikungunya virus infection.
    Microbiology and Immunology 12/2011; 56(2):134-8. DOI:10.1111/j.1348-0421.2011.00417.x · 1.31 Impact Factor