Article

Review: Oxygen and trophoblast biology--a source of controversy.

Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO 63110, USA.
Placenta (Impact Factor: 3.12). 01/2011; 32 Suppl 2:S109-18. DOI: 10.1016/j.placenta.2010.12.013
Source: PubMed

ABSTRACT Oxygen is necessary for life yet too much or too little oxygen is toxic to cells. The oxygen tension in the maternal plasma bathing placental villi is <20 mm Hg until 10-12 weeks' gestation, rising to 40-80 mm Hg and remaining in this range throughout the second and third trimesters. Maldevelopment of the maternal spiral arteries in the first trimester predisposes to placental dysfunction and sub-optimal pregnancy outcomes in the second half of pregnancy. Although low oxygen at the site of early placental development is the norm, controversy is intense when investigators interpret how defective transformation of spiral arteries leads to placental dysfunction during the second and third trimesters. Moreover, debate rages as to what oxygen concentrations should be considered normal and abnormal for use in vitro to model villous responses in vivo. The placenta may be injured in the second half of pregnancy by hypoxia, but recent evidence shows that ischemia with reoxygenation and mechanical damage due to high flow contributes to the placental dysfunction of diverse pregnancy disorders. We overview normal and pathologic development of the placenta, consider variables that influence experiments in vitro, and discuss the hotly debated question of what in vitro oxygen percentage reflects the normal and abnormal oxygen concentrations that occur in vivo. We then describe our studies that show cultured villous trophoblasts undergo apoptosis and autophagy with phenotype-related differences in response to hypoxia.

0 Bookmarks
 · 
112 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The placenta contains efflux transporters, including P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), that limit the passage of xenobiotics, certain hormones and nutrients from the maternal to the fetal circulation. The expression of these transporters changes with gestational age, yet the mechanisms involved remain unknown. However, the changes in P-gp and BCRP transporter expression coincide with those of oxygen tension in the placenta, and oxygen tension has been shown to modulate P-gp and BCRP expression in other tissues. The objective of this study was to investigate the effects of oxygen tension on P-gp and BCRP expression in the term human placenta. Following equilibration in culture (96 h), term placental explants (n = 7) were cultured in 3% or 20% oxygen for 24 and 48 h. Culture medium was collected every 24 h to measure lactate dehydrogenase (LDH; explant viability) and human chorionic gonadotropin (hCG; syncytiotrophoblast function). P-gp (encoded by ABCB1) and BCRP (encoded by ABCG2) protein and mRNA, as well as VEGFA mRNA were measured using western blot and qRT-PCR. P-gp localization was determined using immunofluorescence. Oxygen tension had a significant effect on P-gp expression, with ABCB1/P-gp mRNA and protein levels increased in the hypoxic condition (3% O2) after 48 h (p < 0.05). VEGFA mRNA was elevated by hypoxia at both 24 and 48 h (p < 0.05). In contrast, placental ABCG2/BCRP mRNA and protein expression were stable with changes in oxygen tension. We identified profound differences in the glycosylation of P-gp between cultured and non-cultured placental tissue, with cultured explants expressing deglycosylated P-gp. These findings demonstrate that, at term, the expression of placental P-gp, is regulated by oxygen tension. This suggests that changes in oxygenation of the placenta in the third trimester may alter levels of placental P-gp, and in doing so alter fetal exposure to P-gp substrates, including xenobiotics and certain hormones.
    Placenta 03/2014; · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Maternal preeclampsia is associated with altered placental development in the first trimester of pregnancy. Confined placental trisomy 16 mosaicism (CPM16) is a genetic abnormality of the placenta that is highly predisposing to preeclampsia. We previously demonstrated widespread alterations in DNA methylation in 3rd trimester placentae associated with chromosomally normal early-onset preeclampsia (EOPET) and questioned whether similar changes would be associated with CPM16, making this condition a potential model for studying EOPET-associated changes early in pregnancy. Using the Illumina Infinium HumanMethylation450 BeadChip, 3rd trimester CPM16 placental samples (N = 10) were compared to gestational age matched controls, and to 1st trimester trisomy 16 placentae (N = 5). DNA methylation differences associated with CPM16 were identified at 2254 CpGs using stringent criteria (FDR < 0.01, Δβ > 0.15). A subset of these differences (11%; p < 0.0001) overlapped those observed in chromosomally normal EOPET using similarly stringent criteria (FDR < 0.01; Δβ > 0.125). Importantly, the majority of EOPET-associated CpGs were significantly altered (p < 0.05) in CPM16 with a similar Δβ distribution. This was true for CPM16 with (N = 5) and without (N = 5) EOPET, although EOPET cases showed a tendency towards larger changes. Of the shared CPM16/EOPET associated changes, three CpGs near two genes (ARGHEF37 and JUNB) were also altered in 1st trimester trisomy 16 placentae. Despite the limited sample size, widespread DNA methylation changes are observed in Trisomy 16 that overlap those seen previously in chromosomally normal EOPET. Hence, Trisomy 16 may provide a model to study the progression of placental changes that occurs in EOPET across different gestational ages.
    Placenta 01/2014; · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signs of severe oxidative stress are evident in term placentae of infants born to mothers with preeclampsia (PE), but it is unclear whether this is a cause or consequence of the disease. Here fibroblast lines were established from umbilical cords (UC) delivered by mothers who had experienced early onset PE and from controls with the goal of converting these primary cells to induced pluripotent stem cells and ultimately trophoblast. Contrary to expectations, the oxidative stress responses of these non-placental cells from PE infants were more severe than those from controls.
    PLoS ONE 01/2014; 9(7):e103110. · 3.73 Impact Factor