Molecular enzymology of 5-Aminolevulinate synthase, the gatekeeper of heme biosynthesis

Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida 33612-4799, USA.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 11/2011; 1814(11):1467-73. DOI: 10.1016/j.bbapap.2010.12.015
Source: PubMed

ABSTRACT Pyridoxal-5'-phosphate (PLP) is an obligatory cofactor for the homodimeric mitochondrial enzyme 5-aminolevulinate synthase (ALAS), which controls metabolic flux into the porphyrin biosynthetic pathway in animals, fungi, and the α-subclass of proteobacteria. Recent work has provided an explanation for how this enzyme can utilize PLP to catalyze the mechanistically unusual cleavage of not one but two substrate amino acid α-carbon bonds, without violating the theory of stereoelectronic control of PLP reaction-type specificity. Ironically, the complex chemistry is kinetically insignificant, and it is the movement of an active site loop that defines k(cat) and ultimately, the rate of porphyrin biosynthesis. The kinetic behavior of the enzyme is consistent with an equilibrium ordered induced-fit mechanism wherein glycine must bind first and a portion of the intrinsic binding energy with succinyl-Coenzyme A is then utilized to perturb the enzyme conformational equilibrium towards a closed state wherein catalysis occurs. Return to the open conformation, coincident with ALA dissociation, is the slowest step of the reaction cycle. A diverse variety of loop mutations have been associated with hyperactivity, suggesting the enzyme has evolved to be purposefully slow, perhaps as a means to allow for rapid up-regulation of activity in response to an as yet undiscovered allosteric type effector. Recently it was discovered that human erythroid ALAS mutations can be associated with two very different diseases. Mutations that down-regulate activity can lead to X-linked sideroblastic anemia, which is characterized by abnormally high iron levels in mitochondria, while mutations that up-regulate activity are associated with X-linked dominant protoporphyria, which in contrast is phenotypically identified by abnormally high porphyrin levels. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.

Download full-text


Available from: Gloria C Ferreira, Jul 07, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to develop a simple and fast screening technique to directly evaluate the bactericidal effects of 5-aminolevulinic acid (ALA)-mediated photodynamic inactivation (PDI) and to determine the optimal antibacterial conditions of ALA concentrations and the total dosage of light in vitro. The effects of PDI on Staphylococcus aureus and Pseudomonas aeruginosa in the presence of various concentrations of ALA (1.0 mM, 2.5 mM, 5.0 mM, 10.0 mM) were examined. All bacterial strains were exponentially grown in the culture medium at room temperature in the dark for 60 minutes and subsequently irradiated with 630 ± 5 nm using a light-emitting diode (LED) red light device for accumulating the light doses up to 216 J/cm2. Both bacterial species were susceptible to the ALA-induced PDI. Photosensitization using 1.0 mM ALA with 162 J/cm2 light dose was able to completely reduce the viable counts of S. aureus. A significant decrease in the bacterial viabilities was observed for P. aeruginosa, where 5.0 mM ALA was photosensitized by accumulating the light dose of 162 J/cm2. We demonstrated that the use of microplate-based assays—by measuring the apparent optical density of bacterial colonies at 595 nm—was able to provide a simple and reliable approach for quickly choosing the parameters of ALA-mediated PDI in the cell suspensions.
    Journal of Food and Drug Analysis 09/2014; 22(3):350–355. DOI:10.1016/j.jfda.2013.09.051 · 0.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The appearance of heme, an organic ring surrounding an iron atom, in evolution forever changed the efficiency with which organisms were able to generate energy, utilize gasses and catalyze numerous reactions. Because of this, heme has become a near ubiquitous compound among living organisms. In this review we have attempted to assess the current state of heme synthesis and trafficking with a goal of identifying crucial missing information, and propose hypotheses related to trafficking that may generate discussion and research. The possibilities of spatially organized supramolecular enzyme complexes and organelle structures that facilitate efficient heme synthesis and subsequent trafficking are discussed and evaluated. Recently identified players in heme transport and trafficking are reviewed and placed in an organismal context. Additionally, older, well established data are reexamined in light of more recent studies on cellular organization and data available from newer model organisms. This article is part of a Special Issue entitled: Cell Biology of Metals.
    Biochimica et Biophysica Acta 05/2012; 1823(9):1617-32. DOI:10.1016/j.bbamcr.2012.04.009 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 5-Aminolevulinate synthase (ALAS) and 8-amino-7-oxononanoate synthase (AONS) are homodimeric members of the α-oxoamine synthase family of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Previously, linking two ALAS subunits into a single polypeptide chain dimer yielded an enzyme (ALAS/ALAS) with a significantly greater turnover number than that of wild-type ALAS. To examine the contribution of each active site to the enzymatic activity of ALAS/ALAS, the catalytic lysine, which also covalently binds the PLP cofactor, was substituted with alanine in one of the active sites. Albeit the chemical rate for the pre-steady-state burst of ALA formation was identical in both active sites of ALAS/ALAS, the k(cat) values of the variants differed significantly (4.4±0.2 vs. 21.6±0.7 min(-1)) depending on which of the two active sites harbored the mutation. We propose that the functional asymmetry for the active sites of ALAS/ALAS stems from linking the enzyme subunits and the introduced intermolecular strain alters the protein conformational flexibility and rates of product release. Moreover, active site functional asymmetry extends to chimeric ALAS/AONS proteins, which while having a different oligomeric state, exhibit different rates of product release from the two ALAS and two AONS active sites due to the created intermolecular strain.
    Archives of Biochemistry and Biophysics 07/2011; 511(1-2):107-17. DOI:10.1016/ · 3.04 Impact Factor