Article

Identification of candidate IgG biomarkers for Alzheimer's disease via combinatorial library screening.

Opko Health Laboratories, Jupiter, FL 33458, USA.
Cell (Impact Factor: 31.96). 01/2011; 144(1):132-42. DOI: 10.1016/j.cell.2010.11.054
Source: PubMed

ABSTRACT The adaptive immune system is thought to be a rich source of protein biomarkers, but diagnostically useful antibodies remain unknown for a large number of diseases. This is, in part, because the antigens that trigger an immune response in many diseases remain unknown. We present here a general and unbiased approach to the identification of diagnostically useful antibodies that avoids the requirement for antigen identification. This method involves the comparative screening of combinatorial libraries of unnatural, synthetic molecules against serum samples obtained from cases and controls. Molecules that retain far more IgG antibodies from the case samples than the controls are identified and subsequently tested as capture agents for diagnostically useful antibodies. The utility of this method is demonstrated using a mouse model for multiple sclerosis and via the identification of two candidate IgG biomarkers for Alzheimer's disease.

1 Bookmark
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular diagnostic tools with non-invasive properties that allow detection of pathological events in Alzheimer's disease (AD) and other neurodegenerative tauopathies are essential for the development of therapeutics. Several diagnostic strategies based on the identification of biomarkers have been proposed. However, its specificity among neurodegenerative disorders is disputable as the association with pathological events remains elusive. Recently, we showed that Amphiphysin-1 (AMPH1) protein's abundance is reduced in the central nervous system (CNS) of the tauopathy mouse model JNPL3 and AD brains. AMPH1 is a synaptic protein that plays an important role in clathrin-mediated endocytosis and associates with BIN1, one of the most important risk loci for AD. Also, it has been associated with a rare neurological disease known as Stiff-Person Syndrome (SPS). Auto-antibodies against AMPH1 are used as diagnostic biomarkers for a paraneoplastic variant of SPS. Therefore, we set up to evaluate the presence and abundance of auto-AMPH1 antibodies in tau-mediated neurodegeneration. Immunoblots and enzyme-linked immunosorbent assays (ELISA) were conducted to detect the presence of auto-AMPH1 antibodies in sera from euthanized mice that developed neurodegeneration (JNPL3) and healthy control mice (NTg). Results showed increased levels of auto-AMPH1 antibodies in JNPL3 sera compared to NTg controls. The abundance of auto-AMPH1 antibodies correlated with motor impairment and AMPH1 protein level decrease in the CNS. The results suggest that auto-AMPH1 antibodies could serve as a biomarker for the progression of tau-mediated neurodegeneration in JNPL3 mice.
    Frontiers in Neuroscience 01/2014; 7:277.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Large one-bead one-compound (OBOC) combinatorial libraries can be constructed relatively easily by solid-phase split and pool synthesis. The use of resins with hydrophilic surfaces, such as TentaGel, allows the beads to be used directly in screens for compounds that bind selectively to labeled proteins, nucleic acids, or other biomolecules. However, we have found that this method, while useful, has a high false positive rate. In other words, beads that are scored as hits often display compounds that prove to be poor ligands for the target of interest when they are resynthesized and carried through validation trials. This results in a significant waste of time and resources in cases where putative hits cannot be validated without resynthesis. Here, we report that this problem can be largely eliminated through the use of redundant OBOC libraries, where more than one bead displaying the same compound is present in the screen. We show that compounds isolated more than once are likely to be high quality ligands for the target of interest, whereas compounds isolated only once have a much higher likelihood of being poor ligands. While the use of redundant libraries does limit the number of unique compounds that can be screened at one time in this format, the overall savings in time, effort, and materials makes this a more efficient route to the isolation of useful ligands for biomolecules.
    ACS combinatorial science. 04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Naturally occurring autoantibodies (NAbs) against a number of potentially disease-associated cellular proteins, including Amyloid-beta1-42 (Abeta1-42), Alpha-synuclein (Asyn), myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), and S100 calcium binding protein B (S100B) have been suggested to be associated with neurodegenerative disorders, in particular Alzheimer's (AD) and Parkinson's disease (PD). Whereas the (reduced) occurrence of specific NAbs in AD is widely accepted, previous literature examining the relation of these NAb titres between PD patients and controls, as well as comparing these levels with demographic and clinical parameters in PD patients have produced inconsistent findings. We therefore aimed, in a cross-sectional approach, to determine serum titres of the above NAbs in a cohort of 93 PD patients (31 of them demented) and 194 controls. Levels were correlated with demographic and clinical variables, cerebrospinal fluid Abeta1-42, total tau and phospho-tau levels, as well as with single nucleotide polymorphisms (SNPs) of genes which either have been reported to influence the immune system, the amyloid cascade or the occurrence of PD (ApoE, GSK3B, HLA-DRA, HSPA5, SNCA, and STK39). The investigated NAb titres were neither significantly associated with the occurrence of PD, nor with demographic and clinical parameters, neurodegenerative markers or genetic variables. These results argue against a major potential of blood-borne parameters of the adaptive immune system to serve as trait or state markers in PD.
    PLoS ONE 01/2014; 9(2):e88604. · 3.73 Impact Factor

Full-text (2 Sources)

View
29 Downloads
Available from
May 27, 2014