Article

Identification of candidate IgG biomarkers for Alzheimer's disease via combinatorial library screening.

Opko Health Laboratories, Jupiter, FL 33458, USA.
Cell (Impact Factor: 31.96). 01/2011; 144(1):132-42. DOI: 10.1016/j.cell.2010.11.054
Source: PubMed

ABSTRACT The adaptive immune system is thought to be a rich source of protein biomarkers, but diagnostically useful antibodies remain unknown for a large number of diseases. This is, in part, because the antigens that trigger an immune response in many diseases remain unknown. We present here a general and unbiased approach to the identification of diagnostically useful antibodies that avoids the requirement for antigen identification. This method involves the comparative screening of combinatorial libraries of unnatural, synthetic molecules against serum samples obtained from cases and controls. Molecules that retain far more IgG antibodies from the case samples than the controls are identified and subsequently tested as capture agents for diagnostically useful antibodies. The utility of this method is demonstrated using a mouse model for multiple sclerosis and via the identification of two candidate IgG biomarkers for Alzheimer's disease.

1 Bookmark
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a neurodegenerative disorder that accounts for the majority of dementia cases. While research over the past decades has made advances into understanding disease pathology, definite AD diagnosis currently relies on confirmation by autopsy. The anticipated dramatic rise in affected individuals over the next decades necessitates the development of diagnostic tests applicable to living individuals, which depends on identification of disease biomarkers. Diagnostics based on blood protein biomarkers are particularly desired since these would allow for economical, rapid and non-invasive analysis of individual biomarker profiles. Research is actively ongoing in this field and has led to the identification of autoantibodies and various proteins in the blood that may represent a disease-specific blood signature of AD. This review provides an overview on the progress in the field of identification of AD-specific blood protein biomarkers.
    Alzheimer's Research and Therapy 05/2013; 5(3):18. · 4.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: There is a widely recognised need to develop effective Alzheimer's disease (AD) biomarkers to aid the development of disease-modifying treatments, to facilitate early diagnosis and to improve clinical care. This overview aims to summarise the utility of key neuroimaging and cerebrospinal fluid (CSF) biomarkers for AD, before focusing on the latest efforts to identify informative blood biomarkers. DESIGN: A literature search was performed using PubMed up to September 2011 for reviews and primary research studies of neuroimaging (magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography and amyloid imaging), CSF and blood-based (plasma, serum and platelet) biomarkers in AD and mild cognitive impairment. Citations within individual articles were examined to identify additional studies relevant to this review. RESULTS: Evidence of AD biomarker potential was available for imaging techniques reflecting amyloid burden and neurodegeneration. Several CSF measures are promising, including 42 amino acid β-amyloid peptide (Aβ(42) ); total tau (T-tau) protein, reflecting axonal damage; and phosphorylated tau (P-tau), reflecting neurofibrillary tangle pathology. Studies of plasma Aβ have produced inferior diagnostic discrimination. Alternative plasma and platelet measures are described, which represent potential avenues for future research. CONCLUSIONS: Several imaging and CSF markers demonstrate utility in predicting AD progression and determining aetiology. These require standardisation before forming core elements of diagnostic criteria. The enormous potential available for identifying a minimally-invasive, easily-accessible blood measure as an effective AD biomarker currently remains unfulfilled. Copyright © 2012 John Wiley & Sons, Ltd.
    International Journal of Geriatric Psychiatry 06/2012; · 3.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While plasma biomarkers have been proposed to aid in the clinical diagnosis of Alzheimer disease (AD), few biomarkers have been validated in independent patient cohorts. Here we aim to determine plasma biomarkers associated with AD in 2 independent cohorts and validate the findings in the multicenter Alzheimer's Disease Neuroimaging Initiative (ADNI). Using a targeted proteomic approach, we measured levels of 190 plasma proteins and peptides in 600 participants from 2 independent centers (University of Pennsylvania, Philadelphia; Washington University, St. Louis, MO), and identified 17 analytes associated with the diagnosis of very mild dementia/mild cognitive impairment (MCI) or AD. Four analytes (apoE, B-type natriuretic peptide, C-reactive protein, pancreatic polypeptide) were also found to be altered in clinical MCI/AD in the ADNI cohort (n = 566). Regression analysis showed CSF Aβ42 levels and t-tau/Aβ42 ratios to correlate with the number of APOE4 alleles and plasma levels of B-type natriuretic peptide and pancreatic polypeptide. Four plasma analytes were consistently associated with the diagnosis of very mild dementia/MCI/AD in 3 independent clinical cohorts. These plasma biomarkers may predict underlying AD through their association with CSF AD biomarkers, and the association between plasma and CSF amyloid biomarkers needs to be confirmed in a prospective study.
    Neurology 08/2012; 79(9):897-905. · 8.30 Impact Factor

Full-text (2 Sources)

View
34 Downloads
Available from
May 27, 2014