Article

Enhanced in vivo imaging of metabolically biotinylated cell surface reporters.

Neuroscience Center, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
Analytical Chemistry (Impact Factor: 5.82). 02/2011; 83(3):994-9. DOI: 10.1021/ac102758m
Source: PubMed

ABSTRACT Metabolic biotinylation of intracellular and secreted proteins as well as surface receptors in mammalian cells provides a versatile way to monitor gene expression; to purify and target viral vectors; to monitor cell and tumor distribution in real time in vivo; to label cells for isolation; and to tag proteins for purification, localization, and trafficking. Here, we show that metabolic biotinylation of proteins fused to the bacterial biotin acceptor peptides (BAP) varies among different mammalian cell types and can be enhanced by over 10-fold upon overexpression of the bacterial biotin ligase directed to the same cellular compartment as the fusion protein. We also show that in vivo imaging of metabolically biotinylated cell surface receptors using streptavidin conjugates is significantly enhanced upon coexpression of bacterial biotin ligase in the secretory pathway. These findings have practical applications in designing more efficient targeting and imaging strategies.

0 Bookmarks
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adeno-associated virus (AAV) vectors have shown remarkable efficiency for gene delivery to cultured cells and in animal models of human disease. However, limitations to AAV vectored gene transfer exist after intravenous transfer, including off-target gene delivery (e.g., liver) and low transduction of target tissue. Here, we show that during production, a fraction of AAV vectors are associated with microvesicles/exosomes, termed vexosomes (vector-exosomes). AAV capsids associated with the surface and in the interior of microvesicles were visualized using electron microscopy. In cultured cells, vexosomes outperformed conventionally purified AAV vectors in transduction efficiency. We found that purified vexosomes were more resistant to a neutralizing anti-AAV antibody compared to conventionally purified AAV. Finally, we show that vexosomes bound to magnetic beads can be attracted to a magnetized area in cultured cells. Vexosomes represent a unique entity which offers a promising strategy to improve gene delivery.
    Molecular Therapy 02/2012; 20(5):960-71. · 7.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular vesicles (EVs) are nano-sized vesicles released by normal and diseased cells as a novel form of intercellular communication, and can serve as an effective therapeutic vehicle for genes and drugs. Yet, much remains unknown about the in vivo properties of EVs such as tissue distribution, and blood levels and urine clearance - important parameters that will define their therapeutic effectiveness and potential toxicity. Here we combined Gaussia luciferase and metabolic biotinylation to create a sensitive EV reporter (EV-GlucB) for multimodal imaging in vivo, as well as monitoring of EV levels in the organs and biofluids ex vivo of administered EVs. Bioluminescence and fluorescence-mediated tomography imaging on mice displayed a predominant localization of intravenously administered EVs in the spleen followed by the liver. Monitoring EV signal in the organs, blood and urine further revealed that the EVs first undergo a rapid distribution phase followed by a longer elimination phase via hepatic and renal routes within six hours, which are both faster than previously reported using dye-labeled EVs. Moreover, we demonstrate systemically injected EVs can be delivered to tumor sites within an hour following treatment. Altogether, we show the EVs are dynamically processed in vivo with accurate spatiotemporal resolution, and target a number of normal organs as well as tumors with implications for disease pathology and therapeutic design.
    ACS Nano 01/2014; · 12.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a multifaceted, highly specific reporter for multimodal in vivo imaging and applied it for detection of brain tumors. A metabolically biotinylated, membrane-bound form of Gaussia luciferase was synthesized, termed mbGluc-biotin. We engineered glioma cells to express this reporter and showed that brain tumor formation can be temporally imaged by bioluminescence following systemic administration of coelenterazine. Brain tumors expressing this reporter had high sensitivity for detection by magnetic resonance and fluorescence tomographic imaging upon injection of streptavidin conjugated to magnetic nanoparticles or fluorophore, respectively. Moreover, single photon emission computed tomography showed enhanced imaging of these tumors upon injection with streptavidin complexed to (111)In-DTPA-biotin. This work shows for the first time a single small reporter (∼40 kDa) which can be monitored with most available molecular imaging modalities and can be extended for single cell imaging using intravital microscopy, allowing real-time tracking of any cell expressing it in vivo.
    Journal of the American Chemical Society 03/2012; 134(11):5149-56. · 10.68 Impact Factor

Full-text

Download
1 Download
Available from