Article

Nuclear translocation of Skp2 facilitates its destruction in response to TGFβ signaling

University of Pittsburgh, Pittsburgh, Pennsylvania, United States
Cell cycle (Georgetown, Tex.) (Impact Factor: 5.01). 01/2011; 10(2):285-92. DOI: 10.4161/cc.10.2.14517
Source: PubMed

ABSTRACT Skp2, a F-box protein that determines the substrate specificity for SCF ubiquitin ligase, has recently been demonstrated to be degraded by Cdh1/APC in response to TGFβ signaling. The TGFβ-induced Skp2 proteolysis results in the stabilization of p27 that is necessary to facilitate TGFβ cytostatic effect. Previous observation from immunocytochemistry indicates that Cdh1 principally localizes in the nucleus while Skp2 mainly localizes in the cytosol, which leaves us a puzzle on how Skp2 is recognized and then ubiquitylated by Cdh1/APC in response to TGFβ stimulation. Here, we report that Skp2 is rapidly translocated from the cytosol to the nucleus upon the cellular stimulation with TGFβ. Using a combinatorial approach of immunocytochemistry, biochemical-fraction-coupled immunoprecipitation, mutagenesis as well as protein degradation assay, we have demonstrated that the TGFβ-induced Skp2 nucleus translocation is critical for TGFβ cytostatic effect that allows physical interaction between Cdh1 and Skp2 and in turn facilitates the Skp2 ubquitylation by Cdh1/APC. Disruption of nuclear localization motifs on Skp2 stabilizes Skp2 in the presence of TGF-β signaling, which attenuates TGFβ-induced p27 accumulation and antagonizes TGFβ-induced growth inhibition. Our finding reveals a cellular mechanism that facilitates Skp2 ubiquitylation by Cdh1/APC in response to TGFβ.

Download full-text

Full-text

Available from: Weijun Liu, Jul 01, 2015
0 Followers
 · 
124 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroblastoma is the most common extra-cranial solid tumor of childhood. Despite significant advances, it currently still remains one of the most difficult childhood cancers to cure, with less than 40% of patients with high-risk disease being long-term survivors. MYCN is a proto-oncogene implicated to be directly involved in neuroblastoma development. Amplification of MYCN is associated with rapid tumor progression and poor prognosis. Novel therapeutic strategies which can improve the survival rates whilst reducing the toxicity in these patients are therefore required. Here we discuss genes regulated by MYCN in neuroblastoma, with particular reference to p53, SKP2, and DKK3 and strategies that may be employed to target them.
    Frontiers in Oncology 01/2012; 2:173. DOI:10.3389/fonc.2012.00173
  • [Show abstract] [Hide abstract]
    ABSTRACT: The function of APC/C (anaphase-promoting complex/cyclosome) was initially implicated with the onset of anaphase during mitosis, where its association with Cdc20 targets securin for destruction, thereby allowing the separation of two duplicated daughter genomes. When combined with Cdh1, APC regulates G1/S transition and DNA replication during cell cycle. Beyond cell cycle control, results from recent biochemical and mouse genetic studies have attracted our attention to the unexpected impact of APC/C(Cdh1) in cellular differentiation, genomic integrity and pathogenesis of various diseases. This review will aim to summarize current understanding of APC/C(Cdh1) in regulating crucial events during development.
    Seminars in Cell and Developmental Biology 04/2011; 22(6):579-85. DOI:10.1016/j.semcdb.2011.03.012 · 5.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The type III intermediate filaments (IFs) are essential cytoskeletal elements of mechanosignal transduction and serve critical roles in tissue repair. Mice genetically deficient for the IF protein vimentin (Vim(-/-)) have impaired wound healing from deficits in myofibroblast development. We report a surprising finding made in Vim(-/-) mice that corneas are protected from fibrosis and instead promote regenerative healing after traumatic alkali injury. This reparative phenotype in Vim(-/-) corneas is strikingly recapitulated by the pharmacological agent withaferin A (WFA), a small molecule that binds to vimentin and down-regulates its injury-induced expression. Attenuation of corneal fibrosis by WFA is mediated by down-regulation of ubiquitin-conjugating E3 ligase Skp2 and up-regulation of cyclin-dependent kinase inhibitors p27(Kip1) and p21(Cip1). In cell culture models, WFA exerts G(2)/M cell cycle arrest in a p27(Kip1)- and Skp2-dependent manner. Finally, by developing a highly sensitive imaging method to measure corneal opacity, we identify a novel role for desmin overexpression in corneal haze. We demonstrate that desmin down-regulation by WFA via targeting the conserved WFA-ligand binding site shared among type III IFs promotes further improvement of corneal transparency without affecting cyclin-dependent kinase inhibitor levels in Vim(-/-) mice. This dissociates a direct role for desmin in corneal cell proliferation. Taken together, our findings illuminate a previously unappreciated pathogenic role for type III IF overexpression in corneal fibrotic conditions and also validate WFA as a powerful drug lead toward anti-fibrosis therapeutic development.
    Journal of Biological Chemistry 11/2011; 287(2):989-1006. DOI:10.1074/jbc.M111.297150 · 4.60 Impact Factor