Neural Crest-Derived Stem Cells Migrate and Differentiate Into Cardiomyocytes After Myocardial Infarction

Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
Arteriosclerosis Thrombosis and Vascular Biology (Impact Factor: 5.53). 03/2011; 31(3):582-9. DOI: 10.1161/ATVBAHA.110.214726
Source: PubMed

ABSTRACT We recently demonstrated that primitive neural crest-derived (NC) cells migrate from the cardiac neural crest during embryonic development and remain in the heart as dormant stem cells, with the capacity to differentiate into various cell types, including cardiomyocytes. Here, we examined the migration and differentiation potential of these cells on myocardial infarction (MI).
We obtained double-transgenic mice by crossing protein-0 promoter-Cre mice with Floxed-enhanced green fluorescent protein mice, in which the NC cells express enhanced green fluorescent protein. In the neonatal heart, NC stem cells (NCSCs) were localized predominantly in the outflow tract, but they were also distributed in a gradient from base to apex throughout the ventricular myocardium. Time-lapse video analysis revealed that the NCSCs were migratory. Some NCSCs persisted in the adult heart. On MI, NCSCs accumulated at the ischemic border zone area (BZA), which expresses monocyte chemoattractant protein-1 (MCP-1). Ex vivo cell migration assays demonstrated that MCP-1 induced NCSC migration and that this chemotactic effect was significantly depressed by an anti-MCP-1 antibody. Small NC cardiomyocytes first appeared in the BZA 2 weeks post-MI and gradually increased in number thereafter.
These results suggested that NCSCs migrate into the BZA via MCP-1/CCR2 signaling and contribute to the provision of cardiomyocytes for cardiac regeneration after MI.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anticancer therapies, such as targeting of STAT3 or the use of anthracyclins (doxorubicin), can induce cardiomyopathy. In mice prone to developing heart failure as a result of reduced cardiac STAT3 expression (cardiomyocyte-restricted deficiency of STAT3) or treatment with doxorubicin, we observed impaired endothelial differentiation capacity of Sca-1(+) cardiac progenitor cells (CPCs) in conjunction with attenuated CCL2/CCR2 activation. Mice in both models also displayed reduced erythropoietin (EPO) levels in the cardiac microenvironment. EPO binds to CPCs and seems to be responsible for maintaining an active CCL2/CCR2 system. Supplementation with the EPO derivative CERA in a hematocrit-inactive low dose was sufficient to upregulate CCL2, restore endothelial differentiation of CPCs, and preserve the cardiac microvasculature and cardiac function in both mouse models. Thus, low-dose EPO treatment could potentially be exploited as a therapeutic strategy to reduce the risk of heart failure in certain treatment regimens.
    Cell stem cell 08/2011; 9(2):131-43. DOI:10.1016/j.stem.2011.07.001 · 22.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scar formation following an ischemic insult to the heart is referred to as reparative fibrosis and represents an essential physiological response to heal the damaged myocardium. The biological events of reparative fibrosis include inflammation, the deposition of collagen by myofibroblasts, sympathetic innervation, and angiogenesis. Several studies have further reported that scar formation was associated with the recruitment of neural crest-derived cardiac resident nestin(+) cells that display characteristics consistent with a neural progenitor/stem cell phenotype. During the reparative fibrotic response, these nestin(+) cells participate in neural remodeling and represent a novel cellular substrate of angiogenesis. In addition, a subpopulation of nestin(+) cells identified in the normal heart expressed cardiac progenitor transcriptional factors and may directly contribute to myocardial regeneration following ischemic damage. Nestin protein was also detected in endothelial cells of newly formed blood vessels in the scar and may represent a marker of revascularization. Lastly, nestin was induced in a subpopulation of smooth muscle α-actin(+) scar-derived myofibroblasts, and the expression of the intermediate filament protein may provide a proliferative advantage. Collectively, these data demonstrate that diverse populations of nestin(+) cells participate in cardiac wound healing.
    AJP Heart and Circulatory Physiology 01/2012; 302(1):H1-9. DOI:10.1152/ajpheart.00716.2011 · 4.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The use of stem cells to improve recovery of the injured heart after myocardial infarction (MI) is an important emerging therapeutic strategy. However, recent reviews of clinical trials of stem cell therapy for MI and ischemic heart disease recovery report that less than half of the trials found only small improvements in cardiac function. In clinical trials, bone marrow, peripheral blood, or umbilical cord blood cells were used as the source of stem cells delivered by intracoronary infusion. Some trials administered only a stem cell mobilizing agent that recruits endogenous sources of stem cells. Important challenges to improve the effectiveness of stem cell therapy for CVD include: (1) improved identification, recruitment, and expansion of autologous stem cells; (2) identification of mobilizing and homing agents that increase recruitment; and (3) development of strategies to improve stem cell survival and engraftment of both endogenous and exogenous sources of stem cells. This review is an overview of stem cell therapy for CVD and discusses the challenges these three areas present for maximum optimization of the efficacy of stem cell therapy for heart disease, and new strategies in progress.
    Vascular Health and Risk Management 02/2012; 8:99-113. DOI:10.2147/VHRM.S25665