Article

The inhibitory effects of quaternary ammonium methacrylates on soluble and matrix-bound MMPs.

Department of Prosthodontics and Turku Clinical Biomaterials Center, University of Turku, Institute of Dentistry, Lemminkaisenkatu 2, FI-20520 Turku, Finland.
Journal of dental research (Impact Factor: 4.14). 03/2011; 90(4):535-40. DOI: 10.1177/0022034510389472
Source: PubMed

ABSTRACT Matrix metalloproteinases (MMPs) bound to dentin contribute to the progressive degradation of collagen fibrils in hybrid layers created by dentin adhesives. This study evaluated the MMP-inhibiting potential of quaternary ammonium methacrylates (QAMs), with soluble rhMMP-9 and a matrix-bound endogenous MMP model. Six different QAMs were initially screened by a rhMMP-9 colorimetric assay. For the matrix-bound endogenous MMPs, we aged demineralized dentin beams for 30 days in calcium- and zinc-containing media (CM; control), chlorhexidine, or QAMs in CM to determine the changes in dry mass loss and solubilization of collagen peptides against baseline levels. The inhibitory effects of QAMs on soluble rhMMP-9 varied between 34 and 100%. Beams incubated in CM showed a 29% decrease in dry mass (p < 0.05), whereas beams incubated with QAMs showed only 0.2%-6% loss of dry mass. Significantly more solubilized collagen was detected from beams incubated in CM (p < 0.05). It is concluded that QAMs exhibited dentin MMP inhibition comparable with that of chlorhexidine, but required higher concentrations.

0 Bookmarks
 · 
110 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dentin can be described as a biological composite with collagen matrix embedded with nanosized hydroxyapatite mineral crystallites. Matrix metalloproteinases (MMPs) and cysteine cathepsins are families of endopeptidases. Enzymes of both families are present in dentin and collectively capable of degrading virtually all extracellular matrix components. This review describes these enzymes and their presence in dentin, mainly focusing on their role in dentin caries pathogenesis and loss of collagen in the adhesive hybrid layer under composite restorations. MMPs and cysteine cathepsins present in saliva, mineralized dentin, and/or dentinal fluid may affect the dentin caries process at the early phases of demineralization. Changes in collagen and noncollagenous protein structure may participate in observed decreases in mechanical properties of caries-affected dentin and reduce the ability of caries-affected dentin to remineralize. These endogenous enzymes also remain entrapped within the hybrid layer during the resin infiltration process, and the acidic bonding agents themselves (irrespective of whether they are etch-and-rinse or self-etch) can activate these endogenous protease proforms. Since resin impregnation is frequently incomplete, denuded collagen matrices associated with free water (which serves as a collagen cleavage reagent for these endogenous hydrolase enzymes) can be enzymatically disrupted, finally contributing to the degradation of the hybrid layer. There are multiple in vitro and in vivo reports showing that the longevity of the adhesive interface is increased when nonspecific enzyme-inhibiting strategies are used. Different chemicals (i.e., chlorhexidine, galardin, and benzalkonium chloride) or collagen cross-linker agents have been successfully employed as therapeutic primers in the bonding procedure. In addition, the incorporation of enzyme inhibitors (i.e., quaternary ammonium methacrylates) into the resin blends has been recently promoted. This review will describe MMP functions in caries and hybrid layer degradation and explore the potential therapeutic role of MMP inhibitors for the development of improved intervention strategies for MMP-related oral diseases. © International & American Associations for Dental Research 2014.
    Journal of Dental Research 12/2014; 94(2). DOI:10.1177/0022034514562833 · 4.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dentin–composite bond failure is caused by factors including hybrid layer degradation, which in turn can be caused by hydrolysis and enzymatic degradation of the exposed collagen in the dentin. The objectives of this study were to investigate a new antibacterial monomer (dimethylaminododecyl methacrylate, DMADDM) as an inhibitor for matrix metalloproteinases (MMPs), and to determine the effects of DMADDM on both soluble recombinant human MMPs (rhMMPs) and dentin matrix-bound endogenous MMPs.
    Dental Materials 01/2015; DOI:10.1016/j.dental.2014.12.011 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: This systematic review provides an overview of the different mechanisms proposed to regulate the degradation of dentin matrices by host-derived dentin proteases, particularly as it relates to their role in dental adhesion. Significant developments have taken place over the last few years that have contributed to a better understanding of all the factors affecting the durability of adhesive resin restorations. The complexity of dentin-resin interfaces mandates a thorough understanding of all the mechanical, physical and biochemical aspects that play a role in the formation of hybrid layers. The ionic and hydrophilic nature of current dental adhesives yields permeable, unstable hybrid layers susceptible to water sorption, hydrolytic degradation and resin leaching. The hydrolytic activity of host derived proteases also contributes to the degradation of the resin-dentin bonds. Preservation of the collagen matrix is critical to the improvement of resin-dentin bond durability. Approaches to regulate collagenolytic activity of dentin proteases have been the subject of extensive research in the last few years. A shift has occurred from the use of proteases inhibitors to the use of collagen cross-linking agents. Data provided by 51 studies published in peer-reviewed journals between January 1999 and December 2013 were compiled in this systematic review. Results: Appraisal of the data provided by the studies included in the present review yielded a summary of the mechanisms which have already proven to be clinically successful and those which need further investigation before new clinical protocols can be adopted. (Am J Dent 2014;27:203-214).
    American journal of dentistry 08/2014; 27(4):203-214. · 1.06 Impact Factor

Full-text (2 Sources)

Download
53 Downloads
Available from
May 20, 2014