The Inhibitory Effects of Quaternary Ammonium Methacrylates on Soluble and Matrix-bound MMPs

Department of Prosthodontics and Turku Clinical Biomaterials Center, University of Turku, Institute of Dentistry, Lemminkaisenkatu 2, FI-20520 Turku, Finland.
Journal of dental research (Impact Factor: 4.14). 03/2011; 90(4):535-40. DOI: 10.1177/0022034510389472
Source: PubMed


Matrix metalloproteinases (MMPs) bound to dentin contribute to the progressive degradation of collagen fibrils in hybrid layers created by dentin adhesives. This study evaluated the MMP-inhibiting potential of quaternary ammonium methacrylates (QAMs), with soluble rhMMP-9 and a matrix-bound endogenous MMP model. Six different QAMs were initially screened by a rhMMP-9 colorimetric assay. For the matrix-bound endogenous MMPs, we aged demineralized dentin beams for 30 days in calcium- and zinc-containing media (CM; control), chlorhexidine, or QAMs in CM to determine the changes in dry mass loss and solubilization of collagen peptides against baseline levels. The inhibitory effects of QAMs on soluble rhMMP-9 varied between 34 and 100%. Beams incubated in CM showed a 29% decrease in dry mass (p < 0.05), whereas beams incubated with QAMs showed only 0.2%-6% loss of dry mass. Significantly more solubilized collagen was detected from beams incubated in CM (p < 0.05). It is concluded that QAMs exhibited dentin MMP inhibition comparable with that of chlorhexidine, but required higher concentrations.

Download full-text


Available from: Arzu Tezvergil, Oct 13, 2015
13 Reads
    • "After demineralization, the beams were individually incubated in 300 L of chromogenic thiopeptide substrate and assay buffer (Sensolyte Generic MMP assay; Anaspec, San Jose, CA, USA) in a 96-well plate for 60 min at 25 • C. After 60 min, the beams were removed from the wells; the 96-well plate was placed in a microplate reader (Synergy HT; BioTek Instruments , Winooski, VT, USA) to measure the baseline total MMP activity of each beam at 412 nm [20]. The beams were rinsed free of MMP assay substrate and then distributed to different groups such that the mean baseline activity of each group was not statistically significant. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study tested whether treatment of demineralized dentin with polyacrylic acid (PAA) has any activatory or inhibitory activity on dentin matrix metalloproteinases (MMP)s or cathepsin K (CAT-K). Dentin beams (1mm×2mm×6mm; n=10) were completely demineralized with EDTA. After initial dry mass assessment, the beams were dipped into 37% phosphoric acid (PA), PA+2% benzalkonium chloride (BAC), PA+2% chlorhexidine digluconate (CHX), 10% PAA, PAA+BAC or PAA+CHX for 20s. Demineralized beams without treatment served as control. All beams were incubated in simulated body fluid (SBF) for 1 week and the dry mass loss was evaluated. Aliquots of SBF were used to analyze solubilized telopeptide fragments using ICTP as indicator of MMP-mediated collagen degradation and CTX for CAT-K-mediated degradation. Additional demineralized beams (n=10) were used to measure the influence of different chemical treatments on total MMP activity of EDTA-demineralized dentin using generic MMP assay. Data were analyzed by ANOVA (α=0.05). Dry mass loss ranged from 6% (PA) to 2% for (PA-BAC) or (PAA-BAC) (p<0.05). ICTP release of PAA-treated group was significantly higher (p<0.05) than the control, and not significantly different from the PA group (p>0.05). PA+CHX or PAA+CHX and PAA+BAC showed significantly lower ICTP than PA or PAA groups (p<0.05). CAT-K activity increased significantly after 10% PAA treatment compared to control (p<0.05) or to PA postreatment. Demineralized dentin treated with 10% polyacrylic acid activated CAT-K more than 37% phosphoric acid; 2% chlorhexidine digluconate seems to be a better inhibitor of MMPs and CAT-K than 2% benzalkonium chloride. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
    Dental materials: official publication of the Academy of Dental Materials 05/2015; 31(8). DOI:10.1016/ · 3.77 Impact Factor
  • Source
    • "Attempts have been focused on inhibition of the protease activity to increase the durability of resin dentin bonds [10]. Recently, quaternary ammonium compounds (QACs), well recognized antibacterial agents, have been reported to be effective on inhibiting endogenous dentin proteases [11] [12]. Benzalkonium chloride (BAC), which is a QAC, was previously shown to bind strongly to demineralized dentin and inhibit soluble and matrix-bound MMPs [12]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: The clinical survival rates of the adhesive restorations are limited due to the deterioration of resin-dentin bonds over time, partly due to the endogenous enzymatic activity of dentin. Recently, benzalkonium chloride (BAC) has been shown to effectively inhibit endogenous protease activity of dentin. This study evaluated the effect of different concentrations of benzalkonium chloride (BAC) on the degree of conversion (DC), vickers hardness (VH), setting time (ST) and biaxial flexural strength (FS) of two self-adhesive resin luting cements (RC). Methods: Two RC SpeedCEM (Ivoclar-Vivadent) and BisCem (Bisco) were modified by addition of 0.1, 0.5, 1, 1.5, 2 wt% BAC. The luting cements without the addition of BAC served as control. The DC (FT-IR/ATR from the bottom of the resin disc), vickers hardness (from top and bottom of the light-cured specimen), setting time (ISO 4049) and biaxial flexural strength (0.6 × 6 mm discs) of the specimens were tested. Data were analyzed using ANOVA and Tukeys HSD. Results: DC results were in the range of 70-80%, with some significant changes in BisCem (p < 0.05). VH values of both materials increased significantly compared to control, with no significant change as the BAC percentage increases. BAC addition influenced the ST differently for both materials. For BisCem, a gradual decrease (p < 0.05) was observed whereas, for SpeedCEM, a gradual increase was observed until 1% BAC (p < 0.05). For FS values, a gradual decrease was observed for both materials with increased amounts of BAC (p < 0.05), compared to the control group. Conclusions: BAC addition of up to 1% seems to be acceptable considering the properties tested. Clinical significance. Incorporation of benzalkonium chloride to self-adhesive resin luting cements during the mixing procedure does not significantly affect the degree of conversion or flexural strength of the luting agent and may be a good option to improve the durability of adhesive interface.
    Acta odontologica Scandinavica 05/2014; 72(8):1-8. DOI:10.3109/00016357.2014.913307 · 1.03 Impact Factor
  • Source
    • "Quaternary ammonium methacrylates (QAMs) were synthesized and copolymerized in dental resins to obtain antibacterial functions.15,16,17,18,19,20,21,22,23 Because residual bacteria often exist in the prepared tooth cavity and microleakage could allow new bacteria to invade the tooth-restoration interface, it would be especially useful for the bonding agent to possess antibacterial functions.13,14,15,16,24,25 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibacterial adhesives are promising to inhibit biofilms and secondary caries. The objectives of this study were to synthesize and incorporate quaternary ammonium methacrylates into adhesives, and investigate the alkyl chain length effects on three-dimensional biofilms adherent on adhesives for the first time. Six quaternary ammonium methacrylates with chain lengths of 3, 6, 9, 12, 16 and 18 were synthesized and incorporated into Scotchbond Multi-Purpose. Streptococcus mutans bacteria were cultured on resin to form biofilms. Confocal laser scanning microscopy was used to measure biofilm thickness, live/dead volumes and live-bacteria percentage vs. distance from resin surface. Biofilm thickness was the greatest for Scotchbond control; it decreased with increasing chain length, reaching a minimum at chain length 16. Live-biofilm volume had a similar trend. Dead-biofilm volume increased with increasing chain length. The adhesive with chain length 9 had 37% live bacteria near resin surface, but close to 100% live bacteria in the biofilm top section. For chain length 16, there were nearly 0% live bacteria throughout the three-dimensional biofilm. In conclusion, strong antibacterial activity was achieved by adding quaternary ammonium into adhesive, with biofilm thickness and live-biofilm volume decreasing as chain length was increased from 3 to 16. Antibacterial adhesives typically only inhibited bacteria close to its surface; however, adhesive with chain length 16 had mostly dead bacteria in the entire three-dimensional biofilm. Antibacterial adhesive with chain length 16 is promising to inhibit biofilms at the margins and combat secondary caries.International Journal of Oral Science advance online publication, 11 April 2014; doi:10.1038/ijos.2014.18.
    International Journal of Oral Science 04/2014; 6(2). DOI:10.1038/ijos.2014.18 · 2.53 Impact Factor
Show more