Article

Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons.

Genome Sequencing and Analysis Program, The Broad Institute, Cambridge, Massachusetts 02142, USA.
Genome Research (Impact Factor: 13.85). 02/2011; 21(3):494-504. DOI: 10.1101/gr.112730.110
Source: PubMed

ABSTRACT Bacterial diversity among environmental samples is commonly assessed with PCR-amplified 16S rRNA gene (16S) sequences. Perceived diversity, however, can be influenced by sample preparation, primer selection, and formation of chimeric 16S amplification products. Chimeras are hybrid products between multiple parent sequences that can be falsely interpreted as novel organisms, thus inflating apparent diversity. We developed a new chimera detection tool called Chimera Slayer (CS). CS detects chimeras with greater sensitivity than previous methods, performs well on short sequences such as those produced by the 454 Life Sciences (Roche) Genome Sequencer, and can scale to large data sets. By benchmarking CS performance against sequences derived from a controlled DNA mixture of known organisms and a simulated chimera set, we provide insights into the factors that affect chimera formation such as sequence abundance, the extent of similarity between 16S genes, and PCR conditions. Chimeras were found to reproducibly form among independent amplifications and contributed to false perceptions of sample diversity and the false identification of novel taxa, with less-abundant species exhibiting chimera rates exceeding 70%. Shotgun metagenomic sequences of our mock community appear to be devoid of 16S chimeras, supporting a role for shotgun metagenomics in validating novel organisms discovered in targeted sequence surveys.

2 Bookmarks
 · 
232 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a r t i c l e i n f o The Powder River Basin (PRB) in southeastern Montana and northeastern Wyoming contains massive coal deposits with biologically generated coal bed methane (CBM). The microbial ecology of an area within a coal bed influenced by recent groundwater recharge was sampled with a diffusive microbial sampler (DMS). The DMS contained native coal material and was incubated in situ (57 m depth) to allow colonization of the coal particles. Pyrotag sequence analyses of SSU rRNA gene sequences from the coal contained within the post-incubation DMS detected methylotrophic and hydrogenotrophic methanogenic archaea along with diverse bacterial communities. Microbial enrichments (coal or acetate/H 2) were established from the DMS, and the enriched bacterial and archaeal communities were characterized via clone library analysis. The in situ bacterial communities were more diverse than the archaeal communities, and the archaeal populations differed between coal incubated in situ and in laboratory enrichments. In addition, bacterial diversity was higher for laboratory enrichments with coal compared to enrichments without coal. The elucidation of relationships between microorganisms involved in coal degradation and metabolite (acetate, H 2) utilization within coal-dependent microbial communities is crucial to understanding and improving in situ coal bed methane production.
    International Journal of Coal Geology 04/2013; · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several cohort studies have indicated associations between S. pneumoniae and other microbes in the nasopharynx. To study causal relationships between the nasopharyngeal microbiome and pneumococcal carriage, we employed an experimental human pneumococcal carriage model. Healthy adult volunteers were assessed for pneumococcal carriage by culture of nasal wash samples (NWS). Those without natural pneumococcal carriage received an intranasal pneumococcal inoculation with serotype 6B or 23F. The composition of the nasopharyngeal microbiome was longitudinally studied by 16S rDNA pyrosequencing on NWS collected before and after challenge. Among 40 selected volunteers, 10 were natural carriers and 30 were experimentally challenged. At baseline, five distinct nasopharyngeal microbiome profiles were identified. The phylogenetic distance between microbiomes of natural pneumococcal carriers was particularly large compared to non-carriers. A more diverse microbiome prior to inoculation was associated with the establishment of pneumococcal carriage. Perturbation of microbiome diversity upon pneumococcal challenge was strain specific. Shifts in microbiome profile occurred after pneumococcal exposure, and those volunteers who acquired carriage more often diverted from their original profile. S. pneumoniae was little prominent in the microbiome of pneumococcal carriers. Pneumococcal acquisition in healthy adults is more likely to occur in a diverse microbiome and appears to promote microbial heterogeneity.
    Microbiome. 01/2014; 2:44.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Agricultural practices affect the bacterial community structure in soil. It was hypothesized that agricultural practices would also affect the bacteria involved in the degradation of crop residue. Soil was sampled from four different agricultural practices, i.e. conventional agriculture on the flat or on beds, or conservation agriculture on the flat or on beds. Cultivating crops on the flat is done traditionally, but cultivating crops on beds was introduced so as to avoid water logging during the rainy season and its potential negative effect on yields. Soil from these four treatments was amended in the laboratory with maize residue (Zea mays L.) or its neutral detergent fibre (NDF) fraction, mostly consisting of (hemi) cellulose, and incubated aerobically for 14 days. Maize residue was applied to soil as it is left in the field in conservation agriculture and NDF was added to study which bacteria were favoured by application of (hemi) cellulose. Soil was incubated aerobically while the carbon mineralization and the bacterial population were monitored. On the one hand, the relative abundance of phylotypes belonging to bacterial groups that preferred low nutrient environments was higher in soil with conservation agriculture (e.g. Acidobacteria 17.6%, Planctomycetes 1.7% and Verrucomicrobia 1.5%) compared to conventional practices (Acidobacteria 11.8%, Planctomycetes 0.9% and Verrucomicrobia 0.4%). On the other hand, the relative abundance of phylotypes belonging to bacterial groups that preferred nutrient rich environments, such as Actinobacteria, showed an opposite trend. It was 11.9% in conservation agriculture and 16.2% in conventional practices. The relative abundance of Arthrobacter (Actinobacteria) and Bacillales more than doubled when maize residue was applied to soil compared to the unamended soil and that of Actinomycetales when maize or NDF was applied. Application of organic material reduced the relative abundance of a wide range of bacterial groups, e.g. Acidobacteria, Bacteroidetes, Planctomycetes and Verrucomicrobia. It was found that application of organic material favoured the same bacterial groups that were more abundant in the soil cultivated conventionally while it reduced those that were favoured in conservation agriculture
    Applied Soil Ecology 06/2015; 90. · 2.21 Impact Factor

Full-text (2 Sources)

Download
74 Downloads
Available from
Jun 10, 2014