Article

A Role for Nuclear Factor Interleukin-3 (NFIL3), a Critical Transcriptional Repressor, in Down-Regulation of Periovulatory Gene Expression

College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China.
Molecular Endocrinology (Impact Factor: 4.2). 03/2011; 25(3):445-59. DOI: 10.1210/me.2010-0250
Source: PubMed

ABSTRACT The LH surge triggers dramatic transcriptional changes in genes associated with ovulation and luteinization. The present study investigated the spatiotemporal expression of nuclear factor IL-3 (NFIL3), a transcriptional regulator of the basic leucine zipper transcription factor superfamily, and its potential role in the ovary during the periovulatory period. Immature female rats were injected with pregnant mare's serum gonadotropin, treated with human chorionic gonadotropin (hCG), and ovaries or granulosa cells were collected at various times after hCG. Nfil3 mRNA was highly induced both in intact ovaries and granulosa cells after hCG treatment. In situ hybridization demonstrated that Nfil3 mRNA was highly induced in theca-interstitial cells at 4-8 h after hCG, localized to granulosa cells at 12 h, and decreased at 24 h. Overexpression of NFIL3 in granulosa cells inhibited the induction of prostaglandin-endoperoxide synthase 2 (Ptgs2), progesterone receptor (Pgr), epiregulin (Ereg), and amphiregulin (Areg) and down-regulated levels of prostaglandin E2. The inhibitory effect on Ptgs2 induction was reversed by NFIL3 small interfering RNA treatment. In theca-interstitial cells the expression of hydroxyprostaglandin dehydrogenase 15-(nicotinamide adenine dinucleotide) (Hpgd) was also inhibited by NFIL3 overexpression. Data from luciferase assays demonstrated that NFIL3 overexpression decreased the induction of the Ptgs2 and Areg promoter activity. EMSA and chromatin immunoprecipitation analyses indicated that NFIL3 binds to the promoter region containing the DNA-binding sites of cAMP response element binding protein and CCAAT enhancer binding protein-β. In summary, hCG induction of NFIL3 expression may modulate the process of ovulation and theca-interstitial and granulosa cell differentiation by regulating expression of PTGS2, PGR, AREG, EREG, and HPGD, potentially through interactions with cAMP response element binding protein and CCAAT enhancer binding protein-β on their target gene promoters.

0 Followers
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Determining the spatial and temporal expression of genes involved in the ovulatory pathway is critical for the understanding of the role of each estrogen receptor in the modulation of folliculogenesis and ovulation. Estrogen receptor (ER) β is highly expressed in ovarian granulosa cells and mice lacking ERβ (βERKO) are subfertile due to inefficient ovulation. Previous work has focused on isolated granulosa cells or cultured follicles and while informative, provides confounding results due to the heterogeneous cell types present including granulosa, theca and oocytes and exposure to in vitro conditions. Herein, we isolated preovulatory granulosa cells from WT and ERβ-null mice using laser capture microdissection to examine the genomic transcriptional response downstream of PMSG (mimicking FSH) and PMSG/hCG (mimicking LH) stimulation. This allows for a direct comparison of in vivo granulosa cells at the same stage of development from both WT and ERβ-null ovaries. ERβ-null granulosa cells showed altered expression of genes known to be regulated by FSH (Akap12 and Runx2) as well as not previously reported (Arnt2 and Pou5f1) in WT granulosa cells. Our analysis also identified 304 genes not previously associated with ERβ in granulosa cells. LH responsive genes including Abcb1b and Fam110c show reduced expression in ERβ-null granulosa cells; however novel genes including Rassf2 and Megf10 were also identified as being downstream of LH signaling in granulosa cells. Collectively, our data suggests that granulosa cells from ERβ-null ovaries may not be appropriately differentiated and are unable to respond properly to gonadotropin stimulation.
    Endocrinology 04/2013; 154(6). DOI:10.1210/en.2012-2256 · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amphiregulin (AREG) is a ligand of the epidermal growth factor receptor (EGFR), a widely expressed transmembrane tyrosine kinase. AREG is synthesized as a membrane-anchored precursor protein that can engage in juxtacrine signaling on adjacent cells. Alternatively, after proteolytic processing by cell membrane proteases, mainly TACE/ADAM17, AREG is secreted and behaves as an autocrine or paracrine factor. AREG gene expression and release is induced by a plethora of stimuli including inflammatory lipids, cytokines, hormones, growth factors and xenobiotics. Through EGFR binding AREG activates major intracellular signaling cascades governing cell survival, proliferation and motility. Physiologically, AREG plays an important role in the development and maturation of mammary glands, bone tissue and oocytes. Chronic elevation of AREG expression is increasingly associated with different pathological conditions, mostly of inflammatory and/or neoplastic nature. Here we review the essential aspects of AREG structure, function and regulation, discuss the basis for its differential role within the EGFR family of ligands, and identify emerging aspects in AREG research with translational potential.
    Seminars in Cell and Developmental Biology 01/2014; DOI:10.1016/j.semcdb.2014.01.005 · 5.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Histone modifications play critical roles in regulating immunity; however, little is known about the epigenetic control of natural killer (NK) cell development. Here, we found that NK cell development is severely impaired in mice deficient in the histone H2A deubiquitinase MYSM1. We demonstrated that MYSM1 is required for NK cell maturation but not for NK lineage specification and commitment. We also found that MYSM1 intrinsically controls this NK cell maturation. Mechanistic studies revealed that the expression of transcription factor, inhibitor of DNA-binding protein (ID2), a critical factor for NK cell development, is impaired in Mysm1(-/-) NK cells. MYSM1 interacts with nuclear factor IL-3 (NFIL3, also known as E4BP4), a critical factor for mouse NK cell development, and the recruitment of nuclear factor Il-3 to the ID2 locus is dependent on MYSM1. Further, we observed that MYSM1 is involved in maintaining an active chromatin at the ID2 locus to promote NK cell development. Hence this study demonstrates the critical epigenetic regulation of NK cell development by the histone H2A deubiquitinase MYSM1 through the transcriptional control of transcription factors important for NK cell development.
    Proceedings of the National Academy of Sciences 09/2013; 110(41). DOI:10.1073/pnas.1308888110 · 9.81 Impact Factor