Recombinant West Nile virus envelope protein E and domain III expressed in insect larvae protects mice against West Nile disease

Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. Coruña Km. 7.5, 28040 Madrid, Spain.
Vaccine (Impact Factor: 3.62). 02/2011; 29(9):1830-5. DOI: 10.1016/j.vaccine.2010.12.081
Source: PubMed


In this study, West Nile virus (WNV) envelope (rE) protein and its domain III (rDIII) were efficiently expressed in a cost-effective system based on insect larvae as non-fermentative living biofactories. Mice immunized with the partially purified rE or rDIII elicited high antibodies titers that neutralized viral infectivity in cell culture and in suckling mice. All vaccinated animals were fully protected when challenged with neurovirulent WNV NY99. Passive transfer of protective antibodies from immunized mothers to their offspring occurred both by transplacental and lactation routes. These results indicate that the insect-derived antigens tested may constitute potential vaccine candidates to be further evaluated.

8 Reads
  • Source
    • "As a result, DIII has been targeted as a WNV vaccine candidate [8]. Insect cell and bacterial cultures have been explored to express the WNV DIII protein [9] [10]. However, these culture systems "
    [Show abstract] [Hide abstract]
    ABSTRACT: We described the rapid production of the domain III (DIII) of the envelope (E) protein in plants as a vaccine candidate for West Nile Virus (WNV). Using various combinations of vector modules of a deconstructed viral vector expression system, DIII was produced in three subcellular compartments in leaves of Nicotiana benthamiana by transient expression. DIII expressed at much higher levels when targeted to the endoplasmic reticulum (ER) than that targeted to the chloroplast or the cytosol, with accumulation level up to 73 μ g DIII per gram of leaf fresh weight within 4 days after infiltration. Plant ER-derived DIII was soluble and readily purified to > 95% homogeneity without the time-consuming process of denaturing and refolding. Further analysis revealed that plant-produced DIII was processed properly and demonstrated specific binding to an anti-DIII monoclonal antibody that recognizes a conformational epitope. Furthermore, subcutaneous immunization of mice with 5 and 25 μ g of purified DIII elicited a potent systemic response. This study provided the proof of principle for rapidly producing immunogenic vaccine candidates against WNV in plants with low cost and scalability.
    04/2014; 2014(4):952865. DOI:10.1155/2014/952865
  • Source
    • "The EWNV glycoprotein is composed of three domains (DI, DII and DIII) that are connected by flexible hinge regions [20]; domain III contains the receptor-binding region [21] and most of the type-specific and potentially neutralizing B-cell epitopes [22], [23]. Domain III by itself has been shown to be sufficient to induce a protective immune response [6], [9], [11], [14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: West Nile Virus (WNV) is a zoonotic mosquito-transmitted flavivirus that can infect and cause disease in mammals including humans. Our study aimed at developing a WNV vectored vaccine based on a fish Novirhabdovirus, the Viral Hemorrhagic Septicemia virus (VHSV). VHSV replicates at temperatures lower than 20°C and is naturally inactivated at higher temperatures. A reverse genetics system has recently been developed in our laboratory for VHSV allowing the addition of genes in the viral genome and the recovery of the respective recombinant viruses (rVHSV). In this study, we have generated rVHSV vectors bearing the complete WNV envelope gene (EWNV) (rVHSV-EWNV) or fragments encoding E subdomains (either domain III alone or domain III fused to domain II) (rVHSV-DIIIWNV and rVHSV-DII-DIIIWNV, respectively) in the VHSV genome between the N and P cistrons. With the objective to enhance the targeting of the EWNV protein or EWNV-derived domains to the surface of VHSV virions, Novirhadovirus G-derived signal peptide and transmembrane domain (SPG and TMG) were fused to EWNV at its amino and carboxy termini, respectively. By Western-blot analysis, electron microscopy observations or inoculation experiments in mice, we demonstrated that both the EWNV and the DIIIWNV could be expressed at the viral surface of rVHSV upon addition of SPG. Every constructs expressing EWNV fused to SPG protected 40 to 50% of BALB/cJ mice against WNV lethal challenge and specifically rVHSV-SPGEWNV induced a neutralizing antibody response that correlated with protection. Surprisingly, rVHSV expressing EWNV-derived domain III or II and III were unable to protect mice against WNV challenge, although these domains were highly incorporated in the virion and expressed at the viral surface. In this study we demonstrated that a heterologous glycoprotein and non membrane-anchored protein, can be efficiently expressed at the surface of rVHSV making this approach attractive to develop new vaccines against various pathogens.
    PLoS ONE 03/2014; 9(3):e91766. DOI:10.1371/journal.pone.0091766 · 3.23 Impact Factor
  • Source
    • "A lack of dose response in the survival rates for animals infected with WT or A103G virus was noticed, and survival curves of animals infected with Res mutant also displayed a weak dose-response. This is compatible with previous observations of a lack of a direct relationship between WNV infecting dose and mortality rates reported by us and others [36], [46], [47], [48]. As none of the doses assayed for Res or A103G virus killed at least 50% of the animals, the exact determination of 50% lethal dose (LD50) for mutant viruses was impaired. "
    [Show abstract] [Hide abstract]
    ABSTRACT: West Nile virus (WNV) is a worldwide distributed mosquito-borne flavivirus that naturally cycles between birds and mosquitoes, although it can infect multiple vertebrate hosts including horses and humans. This virus is responsible for recurrent epidemics of febrile illness and encephalitis, and has recently become a global concern. WNV requires to transit through intracellular acidic compartments at two different steps to complete its infectious cycle. These include fusion between the viral envelope and the membrane of endosomes during viral entry, and virus maturation in the trans-Golgi network. In this study, we followed a genetic approach to study the connections between viral components and acidic pH. A WNV mutant with increased resistance to the acidotropic compound NH4Cl, which blocks organelle acidification and inhibits WNV infection, was selected. Nucleotide sequencing revealed that this mutant displayed a single amino acid substitution (Lys 3 to Glu) on the highly basic internal capsid or core (C) protein. The functional role of this replacement was confirmed by its introduction into a WNV infectious clone. This single amino acid substitution also increased resistance to other acidification inhibitor (concanamycin A) and induced a reduction of the neurovirulence in mice. Interestingly, a naturally occurring accompanying mutation found on prM protein abolished the resistant phenotype, supporting the idea of a genetic crosstalk between the internal C protein and the external glycoproteins of the virion. The findings here reported unveil a non-previously assessed connection between the C viral protein and the acidic pH necessary for entry and proper exit of flaviviruses.
    PLoS ONE 07/2013; 8(7):e69479. DOI:10.1371/journal.pone.0069479 · 3.23 Impact Factor
Show more