Proanthocyanidin-enriched extract from Myrothamnus flabellifolia Welw. exerts antiviral activity against herpes simplex virus type 1 by inhibition of viral adsorption and penetration

Institute of Pharmaceutical Biology and Phytochemistry, University of Muenster, Hittorfstr. 56, D-48149 Muenster, Germany.
Journal of ethnopharmacology (Impact Factor: 2.94). 03/2011; 134(2):468-74. DOI: 10.1016/j.jep.2010.12.038
Source: PubMed

ABSTRACT Extracts from the aerial parts of the South African resurrection plant Myrothamnus flabellifolia Welw. have been used traditionally against infections of the upper respiratory tract and skin diseases. A polyphenol-enriched extract was investigated for potential antiviral effects against herpes simplex virus type 1 (HSV-1) and adenovirus, and the underlying mode of action was to be studied.
Antiviral effects of an acetone-water extract (MF) from Myrothamnus flabellifolia on HSV-1 and adenovirus type 3 were tested in infected Vero cells by plaque reduction assay, MTT test and immunofluorescence. The influence of the extract on the HSV-1 envelope glycoprotein D was shown by Western blot. Organotypic full thickness skin models consisting of multilayer skin equivalents were used for the investigation of MF effects on HSV-1 replication.
MF exhibited strong antiviral activity against HSV-1. The HSV-1-specific inhibitory concentration (IC(50)) was determined as 0.4 μg/mL and the cytotoxic concentration (CC(50)) against Vero cells as 50 μg/mL. A selectivity index (SI) (ratio of CC(50) to IC(50)) of approximately 120 was calculated when MF was added to the virus inoculum for 1h at 37°C prior to infection. The replication of adenovirus 3 was not affected by MF. MF abolished virus entry into the host cell by blocking viral attachment to the cell surface. When added after attachment at a concentration of >6 μg/mL, the extract also inhibited penetration of HSV-1 into the host cell. Polyphenolic compounds from MF directly interacted with viral particles, leading to the oligomerisation of envelope proteins as demonstrated for the essential viral glycoprotein D (gD). Using organotypic full thickness tissue cultures, it was shown that treatment of HSV-1 infected cultures with the MF resulted in reduced viral spread.
A polyphenol-enriched extract from Myrothamnus flabellifolia strongly acts against HSV-1 by blocking viral entry into the cells.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The arthropod-borne Mayaro virus (MAYV) causes `Mayaro fever¿, a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Studies showed that the virus could also be transmitted by the mosquito Aedes aegypti. Recently, MAYV has attracted attention due to its likely urbanization. To date, there are no drugs that can treat this illness.Methods Fractions and compounds were obtained by chromatography from leaf extracts of C. australis and chemically identified as flavonoids and condensed tannins using spectroscopic and spectrometric techniques (UV, NMR, and ESI-FT-ICR MS). Cytotoxicity of EtOAc, n-BuOH and EtOAc-Pp fractions were measured by the dye-uptake assay while their antiviral activity was evaluated by a virus yield inhibition assay. Larvicidal activity was measured by the procedures recommended by the WHO expert committee for determining acute toxicity.ResultsThe following group of substances was identified from EtOAc, n-BuOH and EtOAc-Pp fractions: flavones, flavonols, and their glycosides and condensed tannins. EtOAc and n-BuOH fractions inhibited MAYV production, respectively, by more than 70% and 85% at 25 ¿g/mL. EtOAc-Pp fraction inhibited MAYV production by more than 90% at 10 ¿g/mL, displaying a stronger antiviral effect than the licensed antiviral ribavirin. This fraction had an excellent antiviral effect (IC90¿=¿4.7¿±¿0.3 ¿g/mL), while EtOAc and n-BuOH fractions were less active (IC90¿=¿89.1¿±¿4.4 ¿g/mL and IC90¿=¿40.9¿±¿5.7 ¿g/mL, respectively).Conclusions C. australis can be used as a source of compounds with anti-Mayaro virus activity. This is the first report on the biological activity of C. australis.
    Parasites & Vectors 11/2014; 7(1):537. DOI:10.1186/PREACCEPT-8683180671372281 · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infections by influenza A viruses (IAV) are a major health burden to mankind. The current antiviral arsenal against IAV is limited and novel drugs are urgently required. Medicinal plants are known as an abundant source for bioactive compounds, including antiviral agents. The aim of the present study was to characterize the anti-IAV potential of a proanthocyanidin-enriched extract derived from the aerial parts of Rumex acetosa (RA), and to identify active compounds of RA, their mode of action, and structural features conferring anti-IAV activity. In a modified MTT (MTTIAV) assay, RA was shown to inhibit growth of the IAV strain PR8 (H1N1) and a clinical isolate of IAV(H1N1)pdm09 with a half-maximal inhibitory concentration (IC50) of 2.5 µg/mL and 2.2 µg/mL, and a selectivity index (SI) (half-maximal cytotoxic concentration (CC50)/IC50)) of 32 and 36, respectively. At RA concentrations>1 µg/mL plaque formation of IAV(H1N1)pdm09 was abrogated. RA was also active against an oseltamivir-resistant isolate of IAV(H1N1)pdm09. TNF-α and EGF-induced signal transduction in A549 cells was not affected by RA. The dimeric proanthocyanidin epicatechin-3-O-gallate-(4β→8)-epicatechin-3'-O-gallate (procyanidin B2-di-gallate) was identified as the main active principle of RA (IC50 approx. 15 µM, SI≥13). RA and procyanidin B2-di-gallate blocked attachment of IAV and interfered with viral penetration at higher concentrations. Galloylation of the procyanidin core structure was shown to be a prerequisite for anti-IAV activity; o-trihydroxylation in the B-ring increased the anti-IAV activity. In silico docking studies indicated that procyanidin B2-di-gallate is able to interact with the receptor binding site of IAV(H1N1)pdm09 hemagglutinin (HA). In conclusion, the proanthocyanidin-enriched extract RA and its main active constituent procyanidin B2-di-gallate protect cells from IAV infection by inhibiting viral entry into the host cell. RA and procyanidin B2-di-gallate appear to be a promising expansion of the currently available anti-influenza agents.
    PLoS ONE 10/2014; 9(10):e110089. DOI:10.1371/journal.pone.0110089 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) is a major cause of viral hepatitis and currently infects approximately 170 million people worldwide. An infection by HCV causes high rates of chronic hepatitis (> 75%) and progresses to liver cirrhosis and hepatocellular carcinoma ultimately. HCV can be eliminated by a combination of pegylated α-interferon and the broad-spectrum antiviral drug ribavirin; however, this treatment is still associated with poor efficacy and tolerability and is often accompanied by serious side-effects. While some novel direct-acting antivirals against HCV have been developed recently, high medical costs limit the access to the therapy in cost-sensitive countries. To search for new natural anti-HCV agents, we screened local agricultural products for their suppressive activities against HCV replication using the HCV replicon cell system in vitro. We found a potent inhibitor of HCV RNA expression in the extracts of blueberry leaves and then identified oligomeric proanthocyanidin as the active ingredient. Further investigations into the action mechanism of oligomeric proanthocyanidin suggested that it is an inhibitor of heterogeneous nuclear ribonucleoproteins (hnRNPs) such as hnRNP A2/B1. In this review, we presented an overview of functional foods and ingredients efficient for HCV infection, the chemical structural characteristics of oligomeric proanthocyanidin, and its action mechanism.