Article

Survival of zirconia- and metal-supported fixed dental prostheses: a systematic review.

Department of Preclinical Research, Ivoclar Viadent, Benderersterasse 2, Schaan, Liechtenstein.
The International journal of prosthodontics (Impact Factor: 1.19). 01/2010; 23(6):493-502.
Source: PubMed

ABSTRACT The aim of this review was to systematically evaluate and compare the frequency of veneer chipping and core fracture of zirconia fixed dental prostheses (FDPs) and porcelain-fused-to-metal (PFM) FDPs and determine possible influencing factors.
The SCOPUS database and International Association of Dental Research abstracts were searched for clinical studies involving zirconia and PFM FDPs. Furthermore, studies that were integrated into systematic reviews on PFM FDPs were also evaluated. The principle investigators of any clinical studies on zirconia FDPs were contacted to provide additional information. Based on the available information for each FDP, a data file was constructed. Veneer chipping was divided into three grades (grade 1 = polishing, grade 2 = repair, grade 3 = replacement). To assess the frequency of veneer chipping and possible influencing factors, a piecewise exponential model was used to adjust for a study effect.
None of the studies on PFM FDPs (reviews and additional searching) sufficiently satisfied the criteria of this review to be included. Thirteen clinical studies on zirconia FDPs and two studies that investigated both zirconia and PFM FDPs were identified. These studies involved 664 zirconia and 134 PFM FDPs at baseline. Follow-up data were available for 595 zirconia and 127 PFM FDPs. The mean observation period was approximately 3 years for both groups. The frequency of core fracture was less than 1% in the zirconia group and 0% in the PFM group. When all studies were included, 142 veneer chippings were recorded for zirconia FDPs (24%) and 43 for PFM FDPs (34%). However, the studies differed extensively with regard to veneer chipping of zirconia: 85% of all chippings occurred in 4 studies, and 43% of all chippings included zirconia FDPs. If only studies that evaluated both types of core materials were included, the frequency of chipping was 54% for the zirconia-supported FDPs and 34% for PFM FDPs. When adjusting the survival rate for the study effect, the difference between zirconia and PFM FDPs was statistically significant for all grades of chippings (P = .001), as well as for chipping grade 3 (P = .02). If all grades of veneer chippings were taken into account, the survival of PFM FDPs was 97%, while the survival rate of the zirconia FDPs was 90% after 3 years for a typical study. For both PFM and zirconia FDPs, the frequency of grades 1 and 2 veneer chippings was considerably higher than grade 3. Veneer chipping was significantly less frequent in pressed materials than in hand-layered materials, both for zirconia and PFM FDPs (P = .04).
Since the frequency of veneer chipping was significantly higher in the zirconia FDPs than PFM FDPs, and as refined processing procedures have started to yield better results in the laboratory, new clinical studies with these new procedures must confirm whether the frequency of veneer chipping can be reduced to the level of PFM.

Full-text

Available from: Siegward Heintze, May 06, 2015
2 Followers
 · 
143 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective The edge chipping test is used to measure the fracture resistance of dental restoration ceramics and resin composites. This paper focuses on the progress of evaluating chipping resistance of these materials and also on the progress of standardization of this test method. This paper also makes observations about the state of the art of mechanical testing of ceramic and composite restorative materials in general. Interlaboratory comparative studies (“round robins”) are recommended. Methods An edge chipping machine was used to evaluate dozens of materials including porcelains, glass ceramics, aluminas, zirconias, filled resin-composites, new hybrid ceramic-resin composites, laminated composite ceramics, and even polymethyl methacrylate based denture materials. Force versus distance data was collected over a broad range with different indenters. Several chipping resistance parameters were quantified. Results Older restorative materials such as feldspathic porcelains and veneering materials had limited chipping resistance, but more modern ceramics and filled composites show significant improvements. A yttria-partially stabilized zirconia had the greatest resistance to chipping. Much of the early work on edge chipping resistance of brittle materials emphasized linear force versus distance trends obtained with relatively blunt Rockwell C indenters. More recently, trends for dental restorative materials with alternative sharper indenters have been nonlinear. A new phenomenological model with a simple quadratic function fits all data exceptionally well. It is loosely based on an energy balance between indenter work and fracture and deformation energies in the chipped material. Significance Although a direct comparison of our laboratory scale tests on idealized simple geometries to clinical outcomes has not yet been done, anecdotal evidence suggests the procedure does produce clinically relevant rankings and outcomes. Despite the variations in the trends and indenters, comparisons between materials can easily be made by chipping convenient block-shaped specimens with sharp conical 120°, Vickers, or Rockwell C indenters at a defined edge distance of 0.5 mm. Broad distance ranges are recommended for trend evaluation. This work has provided important information for standardization.
    Dental Materials 09/2014; 31(1). DOI:10.1016/j.dental.2014.08.378 · 4.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fractures of posterior fixed dental all-ceramic prostheses can be caused by one or more factors including prosthesis design, flaw distribution, direction and magnitude of occlusal loading, and nature of supporting infrastructure (tooth root/implant), and presence of adjacent teeth. This clinical study of implant-supported, all-ceramic fixed dental prostheses, determined the effects of (1) presence of a tooth distal to the most distal retainer; (2) prosthesis loading either along the non-load bearing or load bearing areas; (3) presence of excursive contacts or maximum intercuspation contacts in the prosthesis; and (4) magnitude of bite force on the occurrence of veneer ceramic fracture.
    Journal of Dentistry 07/2014; 42(10). DOI:10.1016/j.jdent.2014.07.001 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the immemorial, the replacement of missing teeth has been a medical and cosmetic necessity for human kind. Nowadays, middle-aged population groups have experienced improved oral health, as compared to previous generations, and the percentage of edentulous adults can be expected to further decline. However, with the continued increase in the number of older adult population, it is anticipated that the need for some form of full-mouth restoration might increase from 53.8 million in 1991 to 61 million in 2020 [1]. Denture prosthetics has undergone many development stages since the first dentures were fabricated. The introduction of computer-aided design/computer aided manufacturing (CAD/CAM) has resulted in a more accurate manufacturing of prosthetic frameworks, greater accuracy of dental restorations, and in particular, implant supported prosthesis.
    The Open Dentistry Journal 05/2014; 8(1):85-94. DOI:10.2174/1874210601408010085