Article

Reduced expression of the ROCK inhibitor Rnd3 is associated with increased invasiveness and metastatic potential in mesenchymal tumor cells.

Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (CNR), Pavia, Italy.
PLoS ONE (Impact Factor: 3.53). 01/2010; 5(11):e14154. DOI: 10.1371/journal.pone.0014154
Source: PubMed

ABSTRACT Mesenchymal and amoeboid movements are two important mechanisms adopted by cancer cells to invade the surrounding environment. Mesenchymal movement depends on extracellular matrix protease activity, amoeboid movement on the RhoA-dependent kinase ROCK. Cancer cells can switch from one mechanism to the other in response to different stimuli, limiting the efficacy of antimetastatic therapies.
We investigated the acquisition and molecular regulation of the invasion capacity of neoplastically transformed human fibroblasts, which were able to induce sarcomas and metastases when injected into immunocompromised mice. We found that neoplastic transformation was associated with a change in cell morphology (from fibroblastic to polygonal), a reorganization of the actin cytoskeleton, a decrease in the expression of several matrix metalloproteases and increases in cell motility and invasiveness. In a three-dimensional environment, sarcomagenic cells showed a spherical morphology with cortical actin rings, suggesting a switch from mesenchymal to amoeboid movement. Accordingly, cell invasion decreased after treatment with the ROCK inhibitor Y27632, but not with the matrix protease inhibitor Ro 28-2653. The increased invasiveness of tumorigenic cells was associated with reduced expression of Rnd3 (also known as RhoE), a cellular inhibitor of ROCK. Indeed, ectopic Rnd3 expression reduced their invasive ability in vitro and their metastatic potential in vivo.
These results indicate that, during neoplastic transformation, cells of mesenchymal origin can switch from a mesenchymal mode of movement to an amoeboid one. In addition, they point to Rnd3 as a possible regulator of mesenchymal tumor cell invasion and to ROCK as a potential therapeutic target for sarcomas.

0 Bookmarks
 · 
95 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rho family guanosine triphosphatase (GTPase) 3 (Rnd3), a member of the small Rho GTPase family, has been suggested to regulate cell actin cytoskeleton dynamics, cell migration, and apoptosis through the Rho kinase-dependent signaling pathway. The biological function of Rnd3 in the heart is unknown. The downregulation of small GTPase Rnd3 transcripts was found in patients with end-stage heart failure. The pathological significance of Rnd3 loss in the transition to heart failure remains unexplored. To investigate the functional consequence of Rnd3 downregulation and the associated molecular mechanism, we generated Rnd3(+/-) haploinsufficient mice to mimic the downregulation of Rnd3 observed in the failing human heart. Rnd3(+/-) mice were viable; however, the mice developed heart failure after pressure overload by transverse aortic constriction (TAC). Remarkable apoptosis, increased caspase-3 activity, and elevated Rho kinase activity were detected in the Rnd3(+/-) haploinsufficient animal hearts. Pharmacological inhibition of Rho kinase by fasudil treatment partially improved Rnd3(+/-) mouse cardiac functions and attenuated myocardial apoptosis. To determine if Rho-associated coiled-coil kinase 1 (ROCK1) was responsible for Rnd3 deficiency-mediated apoptotic cardiomyopathy, we established a double-knockout mouse line, the Rnd3 haploinsufficient mice with ROCK1-null background (Rnd3(+/-/ROCK1-/-)). Again, genetic deletion of ROCK1 partially but not completely rescued Rnd3 deficiency-mediated heart failure phenotype. These data suggest that downregulation of Rnd3 correlates with cardiac loss of function as in heart failure patients. Animals with Rnd3 haploinsufficiency are predisposed to hemodynamic stress. Hyperactivation of Rho kinase activity is responsible in part for the apoptotic cardiomyopathy development. Further investigation of ROCK1-independent mechanisms in Rnd3-mediated cardiac remodeling should be the focus for future study.
    Cell Death & Disease 01/2014; 5:e1284. · 6.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Serotonin selective reuptake inhibitors (SSRIs) have been widely used as first-line drugs in the treatment of a range of depressive and anxiety disorders. Recently, clinical studies found that this class of agents also shows significant efficacy in promoting neurogenesis, neuroplasticity and neurorecovery following stroke. Here, we attempt to elucidate molecular mechanism and biological implication underlying the SSRI-mediated neurorecovery. In the procedure, a comprehensive protein-drug interactome (PDI) was constructed for various SSRIs and their major metabolites as well as a group of control drugs across a large panel of human neuroproteins via a high-throughput molecular docking approach. The obtained PDI was then analyzed at systematic level to extract unexpected targets for SSRIs/metabolites. Biological network analysis and gene ontology (GO) enrichment solidified that the inferred targets have high potential to be directly or indirectly involved in diverse neural events, and further molecular dynamics (MD) simulation and post molecular mechanics-Poisson Boltzmann/surface area (MM-PB/SA) characterization revealed a stable complex architecture and high-affinity interaction between the targets and SSRIs/metabolites. Specifically, two human proteins, i.e. neurogenic locus notch homolog protein 1 (NOTCH 1) and Rho-associated protein kinase 1 (ROCK 1), were suggested as promising regulators in the SSRI-mediated neurorecovery, which can be targeted efficiently by fluoxetine and paroxetine, respectively, as well as other SSRIs and metabolites.
    Bio Systems 04/2014; · 1.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: The Rho kinase/ROCK is critical in vital signal transduction pathways central to many essential cellular activities. Since ROCK possess multiple substrates, modulation of ROCK activity is useful for treatment of many diseases. Areas covered: Significant progress has been made in the development of ROCK inhibitors over the past two years (Jan 2012 to Aug 2013). Patent search in this review was based on FPO IP Research and Communities and Espacenet Patent Search. In this review, patent applications will be classified into four groups for discussions. The grouping is mainly based on structures or scaffolds (groups 1 and 2) and biological functions of ROCK inhibitors (groups 3 and 4). These four groups are i) ROCK inhibitors based on classical structural elements for ROCK inhibition; ii) ROCK inhibitors based on new scaffolds; iii) bis-functional ROCK inhibitors; and iv) novel applications of ROCK inhibitors. Expert opinion: Although currently only one ROCK inhibitor (fasudil) is used as a drug, more drugs based on ROCK inhibition are expected to be advanced into market in the near future. Several directions should be considered for future development of ROCK inhibitors, such as soft ROCK inhibitors, bis-functional ROCK inhibitors, ROCK2 isoform-selective inhibitors, and ROCK inhibitors as antiproliferation agents.
    Expert Opinion on Therapeutic Patents 11/2013; · 3.53 Impact Factor

Full-text (2 Sources)

View
18 Downloads
Available from
May 29, 2014