Dietary supplements and human health: for better or for worse?

Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA.
Molecular Nutrition & Food Research (Impact Factor: 4.91). 01/2011; 55(1):122-35. DOI: 10.1002/mnfr.201000415
Source: PubMed

ABSTRACT Encouraged by the potential health benefits of higher dietary intake of substances with beneficial properties, the use of supplements containing these compounds has increased steadily over recent years. The effects of several of these, many of which are antioxidants, have been supported by data obtained in vitro, in animal models, and often by human studies as well. However, as carefully controlled human supplementation trials have been conducted, questions about the efficacy and safety of these supplements have emerged. In this Educational Paper, three different supplements were selected for consideration of the benefits and risks currently associated with their intake. The selected supplements include β-carotene, selenium, and genistein. The use of each is discussed in the context of preclinical and clinical data that provide evidence for both their use in reducing disease incidence and the possible liabilities that accompany their enhanced consumption. Variables that may influence their impact, such as lifestyle habits, baseline nutritional levels, and genetic makeup are considered and the application of these issues to broader classes of supplements is discussed.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidant stress in the cardiovascular system may occur when antioxidant capacity is insufficient to reduce reactive oxygen species and other free radicals. Oxidant stress has been linked to the pathogenesis of atherosclerosis and incident coronary artery disease. As a result of this connection, early observational studies focused on dietary antioxidants, such as β-carotene, α-tocopherol, and ascorbic acid, and demonstrated an inverse relationship between intake of these antioxidants and major adverse cardiovascular events. These findings supported a number of randomized trials on the use of selected antioxidants as primary or secondary prevention strategies to decrease cardiac risk; however, many of these studies reported disappointing results with little or no observed risk reduction in antioxidant-treated patients. Several plausible explanations for these findings have been suggested, including incorrect antioxidant choice or dose, synthetic versus dietary antioxidants as the intervention, and patient selection, all of which will be important to consider when designing future clinical trials. This review will focus on the contemporary evidence that is the basis for our current understanding of the role of antioxidants in cardiovascular disease prevention.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Efforts are underway for development of crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency. As a global staple crop with considerable variation in kernel carotenoid composition, maize (Zea mays L.) could have widespread impact. We performed a genome-wide association study (GWAS) of quantified seed carotenoids across a panel of maize inbreds ranging from light yellow to dark orange in grain color to identify some of the key genes controlling maize grain carotenoid composition. Significant associations at the genome-wide level were detected within the coding regions of zep1 and lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid composition in association studies, as well as within previously associated lcyE and crtRB1 genes. We leveraged existing biochemical and genomic information to identify 58 a priori candidate genes relevant to the biosynthesis and retention of carotenoids in maize to test in a pathway-level analysis. This revealed dxs2 and lut5, genes not previously associated with kernel carotenoids. In genomic prediction models, use of markers that targeted a small set of quantitative trait loci (QTL) associated with carotenoid levels in prior linkage studies were as effective as genome-wide markers for predicting carotenoid traits. Based on our GWAS, pathway-level analysis, and genomic prediction studies, we outline a flexible strategy involving use of a small number of genes that can be selected for rapid conversion of elite white grain germplasm, with minimal amounts of carotenoids, to orange grain versions containing high levels of provitamin A.
    Genetics 09/2014; DOI:10.1534/genetics.114.169979 · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mallotus philippinensis is an important source of molecules with strong antioxidant activity widely used medicinal plant. Previous studies have highlighted their anticestodal, antibacterial, wound healing activities, and so forth. So, present investigation was designed to evaluate the total antioxidant activity and radical scavenging effect of 50% ethanol fruit glandular hair extract (MPE) and its role on Human Erythrocytes. MPE was tested for phytochemical test followed by its HPLC analysis. Standard antioxidant assays like DPPH, ABTS, hydroxyl, superoxide radical, nitric oxide, and lipid peroxidation assay were determined along with total phenolic and flavonoids content. Results showed that MPE contains the presence of various phytochemicals, with high total phenolic and flavonoid content. HPLC analysis showed the presence of rottlerin, a polyphenolic compound in a very rich quantity. MPE exhibits significant strong scavenging activity on DPPH and ABTS assay. Reducing power showed dose dependent increase in concentration absorption compared to standard, Quercetin. Superoxide, hydroxyl radical, lipid peroxidation, nitric oxide assay showed a comparable scavenging activity compared to its standard. Our finding further provides evidence that Mallotus fruit extract is a potential natural source of antioxidants which have a protective role on human Erythrocytes exhibiting minimum hemolytic activity and this justified its uses in folklore medicines.
    11/2014; 2014:279451. DOI:10.1155/2014/279451