Article

Analysis of MicroRNA Expression in the Prepubertal Testis

Department of Pathology, Baylor College of Medicine, Houston, Texas, United States of America.
PLoS ONE (Impact Factor: 3.53). 12/2010; 5(12):e15317. DOI: 10.1371/journal.pone.0015317
Source: PubMed

ABSTRACT Only thirteen microRNAs are conserved between D. melanogaster and the mouse; however, conditional loss of miRNA function through mutation of Dicer causes defects in proliferation of premeiotic germ cells in both species. This highlights the potentially important, but uncharacterized, role of miRNAs during early spermatogenesis. The goal of this study was to characterize on postnatal day 7, 10, and 14 the content and editing of murine testicular miRNAs, which predominantly arise from spermatogonia and spermatocytes, in contrast to prior descriptions of miRNAs in the adult mouse testis which largely reflects the content of spermatids. Previous studies have shown miRNAs to be abundant in the mouse testis by postnatal day 14; however, through Next Generation Sequencing of testes from a B6;129 background we found abundant earlier expression of miRNAs and describe shifts in the miRNA signature during this period. We detected robust expression of miRNAs encoded on the X chromosome in postnatal day 14 testes, consistent with prior studies showing their resistance to meiotic sex chromosome inactivation. Unexpectedly, we also found a similar positional enrichment for most miRNAs on chromosome 2 at postnatal day 14 and for those on chromosome 12 at postnatal day 7. We quantified in vivo developmental changes in three types of miRNA variation including 5' heterogeneity, editing, and 3' nucleotide addition. We identified eleven putative novel pubertal testis miRNAs whose developmental expression suggests a possible role in early male germ cell development. These studies provide a foundation for interpretation of miRNA changes associated with testicular pathology and identification of novel components of the miRNA editing machinery in the testis.

Download full-text

Full-text

Available from: Cristian Coarfa, Jul 07, 2015
0 Followers
 · 
127 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are endogenous small RNAs that can regulate target mRNAs by binding to their sequences in the 3' untranslated region. The expression of miRNAs and their biogenetic pathway are involved in sexual differentiation and in the regulation of the development of germ cells and gonadal somatic cells. The rice field eel (Monopterus albus) undergoes a natural sexual transformation from female to male via an intersex stage during its life cycle. To investigate the molecular mechanisms of this sexual transformation, miRNAs present in the different sexual stages of the rice field eel were identified by high-throughput sequencing technology. A significantly differential expression among the 3 genders (p < 0.001) was observed for 48 unique miRNAs and 3 miRNAs*. Only 9 unique miRNAs showed a more than 8-fold change in their expression among the 3 genders, including mal-miR-430a and mal-miR-430c which were higher in females than in males. However, mal-miR-430b was only detected in males. Several potential miRNA target genes (cyp19a, cyp19b, nr5a1b, foxl2 amh, and vasa) were also investigated. Real-time RT-PCR demonstrated highly specific expression patterns of these genes in the 3 genders of the rice field eel. Many of these genes are targets of mal-miR-430b according to the TargetScan and miRTarBase. These results suggest that the miR-430 family may be involved in the sexual transformation of the rice field eel. © 2014 S. Karger AG, Basel.
    Sexual Development 11/2014; DOI:10.1159/000369181 · 1.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spermatogenesis is characterized by meiotic divisions and major morphological changes to produce spermatozoa that are capable of independent movement and fertilization of an egg. Male germ cell differentiation is governed by orchestrated, phase-specific gene expression patterns that are tightly controlled at transcriptional and post-transcriptional level. Post-transcriptional regulation of protein-coding mRNAs becomes prominent during the late steps of spermatogenesis when the compacting sperm nucleus becomes transcriptionally inhibited. Small non-coding RNAs are important regulators of gene expression that mainly function post-transcriptionally to control the properties of their target mRNAs. Male germ cells express several classes of small RNAs, including Dicer-dependent microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), as well as Dicer-independent piwi-interacting RNAs (piRNAs). Increasing evidence supports the essential role of small RNA-mediated RNA regulation in normal spermatogenesis and male fertility.
    Molecular and Cellular Endocrinology 04/2013; 382(1). DOI:10.1016/j.mce.2013.04.015 · 4.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of small noncoding RNA, including P-element-induced wimpy testis-interacting RNA, small interfering RNA, and microRNA, has energized research in reproductive medicine. In the two decades since the identification of small RNA, first in Caenorhabditis elegans and then in other animals, scientists in many disciplines have made significant progress in elucidating their biology. A powerful battery of tools, including knockout mice and small RNA mimics and antagonists, has facilitated investigation into the functional roles and therapeutic potential of these small RNA pathways. Current data indicate that small RNA play significant roles in normal development and physiology and pathological conditions of the reproductive tracts of females and males. Biologically plausible mRNA targets for these microRNA are aggressively being discovered. The next phase of research will focus on elucidating the clinical utility of small RNA-selective agonists and antagonists.
    Molecular Endocrinology 05/2011; 25(8):1257-79. DOI:10.1210/me.2011-0099 · 4.20 Impact Factor