Exercise and fat accumulation in the human liver

Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
Current opinion in lipidology (Impact Factor: 5.8). 12/2010; 21(6):507-17. DOI: 10.1097/MOL.0b013e32833ea912
Source: PubMed

ABSTRACT Fat accumulation in the liver is strongly associated with metabolic dysfunction. Regular exercise improves many cardiometabolic risks factors; however, its effect on intrahepatic triglyceride (IHTG) content remains elusive. This article summarizes available data regarding the effects of exercise on IHTG.
Several but not all observational studies report negative associations of habitual physical activity and cardiorespiratory fitness with IHTG and the prevalence of fatty liver. Aerobic exercise training in combination with hypocaloric diet reduces IHTG by a considerable amount (20-60%), even when weight loss is mild (<5%); hence weight loss per se may not be a critical factor. Longitudinal studies involving exercise training without dietary restriction and no weight loss demonstrate that increased cardiorespiratory fitness and reduced intra-abdominal adiposity are not invariably associated with liver fat depletion, whereas relatively large exercise-induced reductions in IHTG content (20-40%) can occur even in the absence of changes in body weight, body composition, or visceral adipose tissue. Although the majority of studies have examined aerobic training, resistance exercise has also been shown to be inversely associated with the prevalence of fatty liver in humans and effectively reduces IHTG content in animals.
Exercise does hold promise as an effective treatment for hepatic steatosis; this field of research is still in its infancy, and there is much more to be learned.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Elevated hepatic lipid content (IntraHepatic Lipid, IHL) increases the risk of metabolic complications. Although prolonged exercise training lowers IHL, it is unknown if acute exercise has the same effect. Furthermore, hepatic ATP content may be related to insulin resistance and IHL. We aimed to investigate if acute exercise leads to changes in IHL and whether this is accompanied by changes in hepatic ATP. Twenty-one men (age 54.8 ± 7.2 years, BMI 29.7 ± 2.2 kg/m(2)) performed a 2 h cycling protocol, once while staying fasted and once while ingesting glucose. IHL was determined at baseline, 30 min post-exercise and 4 h post-exercise. Additionally ATP/Total P ratio was measured at baseline and 4 h post-exercise. Compared with baseline values we did not observe any statistically significant changes in IHL within 30 min post-exercise in neither the fasted nor the glucose-supplemented condition. However, IHL was elevated 4 h post-exercise compared with baseline in the fasted condition (from 8.3 ± 1.8 to 8.7 ± 1.8%, p = 0.010), an effect that was blunted by glucose supplementation (from 8.3 ± 1.9 to 8.3 ± 1.9%, p = 0.789). Acute exercise does not decrease liver fat in overweight middle-aged men. Moreover, IHL increased 4 h post-exercise in the fasted condition, an increase that was absent in the glucose-supplemented condition. These data suggest that a single bout of exercise may not be able to lower IHL.
    Scientific Reports 04/2015; 5:9709. DOI:10.1038/srep09709 · 5.08 Impact Factor
  • Source
    Dataset: mnfr1966
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One segment of the population that is particularly inclined to liver fat accumulation is postmenopausal women. Although nonalcoholic hepatic steatosis is more common in men than in women, after menopause there is a reversal in gender distribution. At the present time, weight loss and exercise are regarded as first line treatments for NAFLD in postmenopausal women, as it is the case for the management of metabolic syndrome. In recent years, there has been substantial evidence coming mostly from the use of the animal model, that indeed estrogens withdrawal is associated with modifications of molecular markers favouring the activity of metabolic pathways ultimately leading to liver fat accumulation. In addition, the use of the animal model has provided physiological and molecular evidence that exercise training provides estrogens-like protective effects on liver fat accumulation and its consequences. The purpose of the present paper is to present information relative to the development of a state of NAFLD resulting from the absence of estrogens and the role of exercise training, emphasizing on the contribution of the animal model on these issues.
    Journal of nutrition and metabolism 01/2012; 2012:914938. DOI:10.1155/2012/914938