High-pressure EPR reveals conformational equilibria and volumetric properties of spin-labeled proteins.

Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2011; 108(4):1331-6. DOI: 10.1073/pnas.1017877108
Source: PubMed

ABSTRACT Identifying equilibrium conformational exchange and characterizing conformational substates is essential for elucidating mechanisms of function in proteins. Site-directed spin labeling has previously been employed to detect conformational changes triggered by some event, but verifying conformational exchange at equilibrium is more challenging. Conformational exchange (microsecond-millisecond) is slow on the EPR time scale, and this proves to be an advantage in directly revealing the presence of multiple substates as distinguishable components in the EPR spectrum, allowing the direct determination of equilibrium constants and free energy differences. However, rotameric exchange of the spin label side chain can also give rise to multiple components in the EPR spectrum. Using spin-labeled mutants of T4 lysozyme, it is shown that high-pressure EPR can be used to: (i) demonstrate equilibrium between spectrally resolved states, (ii) aid in distinguishing conformational from rotameric exchange as the origin of the resolved states, and (iii) determine the relative partial molar volume (ΔV°) and isothermal compressibility (Δβ(T)) of conformational substates in two-component equilibria from the pressure dependence of the equilibrium constant. These volumetric properties provide insight into the structure of the substates. Finally, the pressure dependence of internal side-chain motion is interpreted in terms of volume fluctuations on the nanosecond time scale, the magnitude of which may reflect local backbone flexibility.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Conspectus Protein structures are not static but sample different conformations over a range of amplitudes and time scales. These fluctuations may involve relatively small changes in bond angles or quite large rearrangements in secondary structure and tertiary fold. The equilibrium between discrete structural substates on the microsecond to millisecond time scale is sometimes termed conformational exchange. Protein dynamics and conformational exchange are believed to provide the basis for many important activities, such as protein-protein and protein-ligand interactions, enzymatic activity and protein allostery; however, for many proteins, the dynamics and conformational exchange that lead to function are poorly defined. Spectroscopic methods, such as NMR, are among the most important methods to explore protein dynamics and conformational exchange; however, they are difficult to implement in some systems and with some types of exchange events. Site-directed spin labeling (SDSL) is an EPR based approach that is particularly well-suited to high molecular-weight systems such as membrane proteins. Because of the relatively fast time scale for EPR spectroscopy, it is an excellent method to examine exchange. Conformations that are in exchange are captured as distinct populations in the EPR spectrum, and this feature when combined with the use of methods that can shift the free energy of conformational substates allows one to identify regions of proteins that are in dynamic exchange. In addition, modern pulse EPR methods have the ability to examine conformational heterogeneity, resolve discrete protein states, and identify the substates in exchange. Protein crystallography has provided high-resolution models for a number of membrane proteins; but because of conformational exchange, these models do not always reflect the structures that are present when the protein is in a native bilayer environment. In the case of the Escherichia coli vitamin B12 transporter, BtuB, the energy coupling segment of this protein undergoes a substrate-dependent unfolding, which acts to couple this outer-membrane protein to the inner-membrane protein TonB. EPR spectroscopy demonstrates that the energy coupling segment is in equilibrium between ordered and disordered states, and that substrate binding shifts this equilibrium to favor an unfolded state. However, in crystal structures of BtuB, this segment is resolved and folded within the protein, and neither the presence of this equilibrium nor the substrate-induced change is revealed. This is a result of the solute environment and the crystal lattice, both of which act to stabilize one conformational substate of the transporter. Using SDSL, it can be shown that conformational exchange is present in other regions of BtuB and in other members of this transporter family. Conformational exchange has also been examined in systems such as the plasma membrane SNARE protein, syntaxin 1A, where dynamics are controlled by regulatory proteins such as munc18. Regulating the microsecond to millisecond time scale dynamics in the neuronal SNAREs is likely to be a key feature that regulates assembly of the SNAREs and neurotransmitter release.
    Accounts of Chemical Research 08/2014; · 24.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dinitroxide bis(TEMPO) bisketal (bTbk) was shown to crystallize into open frameworks whose structures were determined by single-crystal X-ray diffraction. We show that bTbk can be used as a supramolecular building block for the hosting of a plethora of guests inside the 1D channels of its paramagnetic framework, including other radicals such as TEMPO or 2-azaadamantane-N-oxyl. C60 and C70 were also found to be easily included in this open framework during its crystallization. This resulted in well-defined, nanostructured assemblies of composite radical crystals (bTbk/toluene/C60 or C70) or (bTbk/toluene/TEMPO) by a very simple dissolution/crystallization process with tunable guest content. Selective C60 extraction was also demonstrated directly from fullerene soot.
    Crystal Growth & Design 12/2013; 14(2):467–476. · 4.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dynamics and function of proteins are governed by the structural and energetic properties of the different states they adopt and the barriers separating them. In earlier work, native-state triplet-triplet-energy-transfer on the villin headpiece subdomain (HP35) revealed an equilibrium between a locked and an unlocked native state, which are structurally similar but have different dynamic properties. The locked state is restricted to low amplitude motions, whereas the unlocked state shows increased conformational flexibility and undergoes local unfolding reactions. This classified the unlocked state as a dry molten globule, which was proposed to represent an expanded native state with loosened side-chain interactions and a solvent-shielded core. To test whether the unlocked state of HP35 is actually expanded compared to the locked state we performed high pressure triplet-triplet-energy-transfer measurements. Increasing pressure shifts the equilibrium from the locked toward the unlocked state, with a small negative reaction volume for unlocking (ΔV(0)=-1.6±0.5cm(3)/mol). Therefore, rather than being expanded, the unlocked state represents an alternatively packed, compact state, demonstrating that native proteins can exist in several compact folded states, an observation with implications for protein function. The transition state for unlocking/locking, in contrast, has a largely increased volume relative to the locked and unlocked state, with respective activation volumes of 7.1±0.4cm(3)/mol and 8.7±0.9cm(3)/mol, indicating an expansion of the protein during the locking/unlocking transition. The presented results demonstrate the existence of both compact, low energy and expanded, high energy dry molten globules, prompting a broader definition of this state.
    Journal of Molecular Biology 04/2014; · 3.91 Impact Factor