High-pressure EPR reveals conformational equilibria and volumetric properties of spin-labeled proteins.

Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2011; 108(4):1331-6. DOI: 10.1073/pnas.1017877108
Source: PubMed

ABSTRACT Identifying equilibrium conformational exchange and characterizing conformational substates is essential for elucidating mechanisms of function in proteins. Site-directed spin labeling has previously been employed to detect conformational changes triggered by some event, but verifying conformational exchange at equilibrium is more challenging. Conformational exchange (microsecond-millisecond) is slow on the EPR time scale, and this proves to be an advantage in directly revealing the presence of multiple substates as distinguishable components in the EPR spectrum, allowing the direct determination of equilibrium constants and free energy differences. However, rotameric exchange of the spin label side chain can also give rise to multiple components in the EPR spectrum. Using spin-labeled mutants of T4 lysozyme, it is shown that high-pressure EPR can be used to: (i) demonstrate equilibrium between spectrally resolved states, (ii) aid in distinguishing conformational from rotameric exchange as the origin of the resolved states, and (iii) determine the relative partial molar volume (ΔV°) and isothermal compressibility (Δβ(T)) of conformational substates in two-component equilibria from the pressure dependence of the equilibrium constant. These volumetric properties provide insight into the structure of the substates. Finally, the pressure dependence of internal side-chain motion is interpreted in terms of volume fluctuations on the nanosecond time scale, the magnitude of which may reflect local backbone flexibility.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875-85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate.
    Proceedings of the National Academy of Sciences 11/2013; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The membrane protein packing database (MP:PD) ( is a database of helical membrane proteins featuring internal atomic packing densities, cavities and waters. Membrane proteins are not tightly packed but contain a considerable number of internal cavities that differ in volume, polarity and solvent accessibility as well as in their filling with internal water. Internal cavities are supposed to be regions of high physical compressibility. By serving as mobile hydrogen bonding donors or acceptors, internal waters likely facilitate transition between different functional states. Despite these distinct functional roles, internal cavities of helical membrane proteins are not well characterized, mainly because most internal waters are not resolved by crystal structure analysis. Here we combined various computational biophysical techniques to characterize internal cavities, reassign positions of internal waters and calculate internal packing densities of all available helical membrane protein structures and stored them in MP:PD. The database can be searched using keywords and entries can be downloaded. Each entry can be visualized in Provi, a Jmol-based protein viewer that provides an integrated display of low energy waters alongside membrane planes, internal packing density, hydrophobic cavities and hydrogen bonds.
    Nucleic Acids Research 11/2013; · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dynamics and function of proteins are governed by the structural and energetic properties of the different states they adopt and the barriers separating them. In earlier work, native-state triplet-triplet-energy-transfer on the villin headpiece subdomain (HP35) revealed an equilibrium between a locked and an unlocked native state, which are structurally similar but have different dynamic properties. The locked state is restricted to low amplitude motions, whereas the unlocked state shows increased conformational flexibility and undergoes local unfolding reactions. This classified the unlocked state as a dry molten globule, which was proposed to represent an expanded native state with loosened side-chain interactions and a solvent-shielded core. To test whether the unlocked state of HP35 is actually expanded compared to the locked state we performed high pressure triplet-triplet-energy-transfer measurements. Increasing pressure shifts the equilibrium from the locked toward the unlocked state, with a small negative reaction volume for unlocking (ΔV(0)=-1.6±0.5cm(3)/mol). Therefore, rather than being expanded, the unlocked state represents an alternatively packed, compact state, demonstrating that native proteins can exist in several compact folded states, an observation with implications for protein function. The transition state for unlocking/locking, in contrast, has a largely increased volume relative to the locked and unlocked state, with respective activation volumes of 7.1±0.4cm(3)/mol and 8.7±0.9cm(3)/mol, indicating an expansion of the protein during the locking/unlocking transition. The presented results demonstrate the existence of both compact, low energy and expanded, high energy dry molten globules, prompting a broader definition of this state.
    Journal of Molecular Biology 04/2014; · 3.91 Impact Factor


1 Download