Pulmonary Surfactant Phosphatidylglycerol Inhibits Mycoplasma pneumoniae-stimulated Eicosanoid Production from Human and Mouse Macrophages

Department of Medicine, National Jewish Health, Denver, Colorado, 80206, USA.
Journal of Biological Chemistry (Impact Factor: 4.57). 03/2011; 286(10):7841-53. DOI: 10.1074/jbc.M110.170241
Source: PubMed


Mycoplasma pneumoniae is a human pathogen causing respiratory infections that are also associated with serious exacerbations of chronic lung diseases.
Membranes and lipoproteins from M. pneumoniae induced a 4-fold increase in arachidonic acid (AA) release from RAW264.7 and a 2-fold increase in AA release from primary
human alveolar macrophages. The bacterial lipoprotein mimic and TLR2/1 agonist Pam3Cys and the TLR2/6 agonist MALP-2 produced
effects similar to those elicited by M. pneumoniae in macrophages by inducing the phosphorylation of p38MAPK and p44/42ERK1/2 MAP kinases and cyclooxygenase-2 (COX-2) expression. M. pneumoniae induced the generation of prostaglandins PGD2 and PGE2 from RAW264.7 cells and thromboxane B2 (TXB2) from human alveolar macrophages. Anti-TLR2 antibody completely abolished M. pneumoniae-induced AA release and TNFα secretion from RAW264.7 cells and human alveolar macrophages. Disruption of the phosphorylation
of p44/42ERK1/2 or inactivation of cytosolic phospholipase A2α (cPLA2α) completely inhibited M. pneumoniae-induced AA release from macrophages. The minor pulmonary surfactant phospholipid, palmitoyl-oleoyl-phosphatidylglycerol (POPG),
antagonized the proinflammatory actions of M. pneumoniae, Pam3Cys, and MALP-2 by reducing the production of AA metabolites from macrophages. The effect of POPG was specific, insofar
as saturated PG, and saturated and unsaturated phosphatidylcholines did not have significant effect on M. pneumoniae-induced AA release. Collectively, these data demonstrate that M. pneumoniae stimulates the production of eicosanoids from macrophages through TLR2, and POPG suppresses this pathogen-induced response.

11 Reads
  • Source
    • "Pattern recognition receptors can be activated not only in reponse to pathogen-associated molecular patterns but also damage-associated molecular patterns arising from cell injury (reviewed in [31], [32]). For example, PG, produced by alveolar cells as a significant component of pulmonary surfactant, inhibits TLR signaling in macrophages exposed to LPS in vitro, acting at multiple sites to disrupt TLR4 signaling [33], as well as TLR2 pathway activation in response to bacterial and mycoplasma byproducts in vitro [34]. PG also protects the lungs from inflammation initiated by LPS exposure in vivo [33]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that liposomes composed of egg-derived phosphatidylglycerol (PG), with a mixed fatty acid composition (comprising mainly palmitate and oleate), inhibit the proliferation and promote the differentiation of rapidly dividing keratinocytes, and stimulate the growth of slowly proliferating epidermal cells. To determine the species of PG most effective at modulating keratinocyte proliferation, primary mouse keratinocytes were treated with different PG species, and proliferation was measured. PG species containing polyunsaturated fatty acids were effective at inhibiting rapidly proliferating keratinocytes, whereas PG species with monounsaturated fatty acids were effective at promoting proliferation in slowly dividing cells. Thus, palmitoyl-arachidonyl-PG (16∶0/20∶4), palmitoyl-linoleoyl-PG (16∶0/18∶2), dilinoleoyl-PG (18∶2/18∶2) and soy PG (a PG mixture with a large percentage of polyunsaturated fatty acids) were particularly effective at inhibiting proliferation in rapidly dividing keratinocytes. Conversely, palmitoyl-oleoyl-PG (16∶0/18∶1) and dioleoyl-PG (18∶1/18∶1) were especially effective proproliferative PG species. This result represents the first demonstration of opposite effects of different species of a single class of phospholipid and suggests that these different PG species may signal to diverse effector enzymes to differentially affect keratinocyte proliferation and normalize keratinocyte proliferation. Thus, different PG species may be useful for treating skin diseases characterized by excessive or insufficient proliferation.
    PLoS ONE 09/2014; 9(9):e107119. DOI:10.1371/journal.pone.0107119 · 3.23 Impact Factor
  • Source
    • "In this sense, there must be some intrinsic or adaptive mechanisms to protect against dysfunctional inflammation during infection. An increasing number of reports have indicated that the hosts have developed sophisticated negative mechanism to regulate the multiple layers of inflammatory response [20], [22], [23]. Indeed, some cell wall components of bacteria, such as lipoteichoic acids and lipopolysaccharides, were reported to activate the basic leucine zipper transcription factor NF-E2-related factor 2 (Nrf2), a key factor involved in antioxidant protein expression in human tracheal smooth muscle cells and monocytes [24]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims This study is to investigate the mechanisms by which macrophage-activating lipopeptide-2 (MALP-2) induces heme oxygenase (HO)-1, a cytoprotective enzyme that catalyzes the degradation of heme, in human monocytes. Methods Human monocytic THP-1 cells were cultured for transient transfection with plasmids and stimulation with MALP-2 for indicative time intervals. After incubation with MALP-2, cells were collected and disrupted, before being tested for promoter activity using luciferase assay. For analysis of proteins, immunoreactive bands were detected using an enhanced chemiluminescence Western blotting system, and the band intensity was measured by densitometryic analysis. For the detection of co-immunoprecipitation, SDS-PAGE was performed and the membranes were probed using respective antibodies. To investigate the cellular localization of NF-E2-related factor 2 (Nrf2), cells underwent immunofluorescence staining and confocal microscopy, and were analyzed using electrophoretic mobility shift assay. Results MALP-2-induced HO-1 expression and promoter activity were abrogated by transfection with dominant negative (DN) plasmids of TLR2 and TLR6, or their neutralizing antibodies. However, inhibition of MyD88 or transfection with the DN-MyD88 was insufficient to attenuate HO-1 expression. In contrast, mutation or silencing of MyD88 adapter-like (Mal) by DN-Mal or siRNA almost completely blocked HO-1 induction. Btk, c-Src and PI3K were also involved in MALP-2-induced HO-1 expression, as revealed by specific inhibitors LFM-A13, PP1 and LY294002, or by transfection with siRNA of c-Src. MALP-2-induced activation of PI3K was attenuated by transfection with DN mutant of Mal, and by pretreatment with LFM-A13 or PP1. Furthermore, MALP-2 stimulated the translocation of Nrf2 from the cytosol to the nucleus and Nrf2 binding to the ARE site in the HO-1 promoter, which could also be inhibited by pretreatment with a PI3K inhibitor, LY294002. Conclusions These results indicated that MALP-2 required TLR2/6, Btk, Mal and c-Src to activate PI3K, which in turn initiated the activation of Nrf2 for efficient HO-1 induction.
    PLoS ONE 07/2014; 9(7):e103433. DOI:10.1371/journal.pone.0103433 · 3.23 Impact Factor
  • Source
    • "During the inflammatory response to infection, bacterial products, such as endotoxins and cytokines, rapidly induce upregulation of COX-2 (Smith et al., 2003; Oshima et al., 2011). Several reports have shown that the induction of COX-2 expression participates in the modulation of inflammatory responses following bacterial infection (Goldmann et al., 2010; Toller et al., 2010; Kandasamy et al., 2011). It has been demonstrated that the COX-2 protein expression and urinary PGE 2 production were upregulated in patients with UTIs (Wheeler et al., 2002). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The type 1 fimbriae of uropathogenic Escherichia coli (UPEC) have been described as important for the establishment of bladder infections and urinary tract infections (UTI). Urinary prostaglandin (PG) levels and cyclooxygenase (COX)-2 expression in urine particulates may increase with infectious and inflammatory processes, including UTIs. We investigated the mechanisms underlying the modulation of COX-2 expression through the invasion of type 1 fimbriated UPEC strain J96 (J96-1) in human bladder 5637 cells. Bladder 5637 cells infected with J96-1 induced increases in the expression of COX-2 and secretion of PGE(2) . By using specific inhibitors and short hairpin RNA (shRNA), we have demonstrated that the activation of extracellular signal-related kinase (ERK), c-Jun-NH(2) -terminal kinase (JNK) and p38 MAPK pathways is critical for J96-1-induced COX-2 expression. Luciferase reporters and chromatin immunoprecipitation assays suggest that J96-1 invasion increases NF-κB- and AP-1-DNA-binding activities in 5637 cells. Inhibition of NF-κB and AP-1 activations blocked the J96-1-induced COX-2 promoter activity and expression. The effect of J96-1 on 5637 cell signalling and COX-2 expression is mediated by Toll-like receptor (TLR)-4. In summary, our findings provide the molecular pathways underlying type 1 fimbriated J96-dependent COX-2 expression in 5637 cells, providing insight into the function of UPEC invasion in bladder epithelial cells.
    Cellular Microbiology 07/2011; 13(11):1703-13. DOI:10.1111/j.1462-5822.2011.01650.x · 4.92 Impact Factor
Show more

Similar Publications