Article

Hsp72 is an early and sensitive biomarker to detect acute kidney injury

Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
EMBO Molecular Medicine (Impact Factor: 8.25). 01/2011; 3(1):5-20. DOI: 10.1002/emmm.201000105
Source: PubMed

ABSTRACT This study was designed to assess whether heat shock protein Hsp72 is an early and sensitive biomarker of acute kidney injury (AKI) as well as to monitor a renoprotective strategy. Seventy-two Wistar rats were divided into six groups: sham-operated and rats subjected to 10, 20, 30, 45 and 60 min of bilateral ischemia (I) and 24 h of reperfusion (R). Different times of reperfusion (3, 6, 9, 12, 18, 24, 48, 72, 96 and 120 h) were also evaluated in 30 other rats subjected to 30 min of ischemia. Hsp72 messenger RNA (mRNA) and protein levels were determined in both kidney and urine. Hsp72-specificity as a biomarker to assess the success of a renoprotective intervention was evaluated in rats treated with different doses of spironolactone before I/R. Renal Hsp72 mRNA and protein, as well as urinary Hsp72 levels, gradually increased relative to the extent of renal injury induced by different periods of ischemia quantified by histomorphometry as a benchmark of kidney damage. Urinary Hsp72 increased significantly after 3 h and continued rising until 18 h, followed by restoration after 120 h of reperfusion in accord with histopathological findings. Spironolactone renoprotection was associated with normalization of urinary Hsp72 levels. Accordingly, urinary Hsp72 was significantly increased in patients with clinical AKI before serum creatinine elevation. Our results show that urinary Hsp72 is a useful biomarker for early detection and stratification of AKI. In addition, urinary Hsp72 levels are sensitive enough to monitor therapeutic interventions and the degree of tubular recovery following an I/R insult.

0 Followers
 · 
118 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most cells physiologically release vesicles as way of intercellular communication. The so-called Extracellular Vesicles (EVs) include exosomes, ectosomes, and apoptotic bodies, which basically differ in their composition and subcellular origin. Specifically, EVs found in urine reflect the state of the urinary system, from podocytes to renal-tubular cells, thus making them an excellent source of samples for the study of kidney physiology and pathology. Several groups have focused on defining biomarkers of kidney-related disorders, from graft rejection to metabolic syndromes. So far, the lack of a standard protocol for EVs isolation precludes the possibility of a proper comparison among the different biomarkers proposed in the literature, stressing the need for validation of these biomarkers not only in larger cohorts of patients but also considering the different methods for EVs isolation. In this review, we aim to gather the current knowledge about EVs-related biomarkers in kidney diseases, with a special emphasis in the methods used to date for EVs enrichment, and discussing the need for more specific protocols of EV isolation in clinical practice.
    Frontiers in Immunology 01/2015; 6:6. DOI:10.3389/fimmu.2015.00006
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and Objectives Acute kidney injury (AKI) complicates the course of disease in critically ill patients. Efforts to change its clinical course have failed because of the fail in the early detection. This study was designed to assess whether heat shock protein (Hsp72) is an early and sensitive biomarker of acute kidney injury (AKI) compared with kidney injury molecule (Kim-1), neutrophil gelatinase-associated lipocalin (NGAL), and interleukin-18 (IL-18) biomarkers. Methods A total of 56 critically ill patients fulfilled the inclusion criteria. From these patients, 17 developed AKI and 20 were selected as controls. In AKI patients, Kim-1, IL-18, NGAL, and Hsp72 were measured from 3 days before and until 2 days after the AKI diagnosis and in no-AKI patients at 1, 5 and 10 days after admission. Biomarker sensitivity and specificity were determined. To validate the results obtained with ROC curves for Hsp72, a new set of critically ill patients was included, 10 with AKI and 12 with no-AKI patients. Results Urinary Hsp72 levels rose since 3 days before the AKI diagnosis in critically ill patients; this early increase was not seen with any other tested biomarkers. Kim-1, IL-18, NGAL, and Hsp72 significantly increased from 2 days before AKI and remained elevated during the AKI diagnosis. The best sensitivity/specificity was observed in Kim-1 and Hsp72: 83/95% and 100/90%, respectively, whereas 1 day before the AKI diagnosis, the values were 100/100% and 100/90%, respectively. The sensibility, specificity and accuracy in the validation test for Hsp72 were 100%, 83.3% and 90.9%, respectively. Conclusions The biomarker Hsp72 is enough sensitive and specific to predict AKI in critically ill patients up to 3 days before the diagnosis.
    PLoS ONE 10/2014; 9(10):e109407. DOI:10.1371/journal.pone.0109407 · 3.53 Impact Factor

Full-text (2 Sources)

Download
37 Downloads
Available from
May 21, 2014